Do you want to publish a course? Click here

EmpNa at WASSA 2021: A Lightweight Model for the Prediction of Empathy, Distress and Emotions from Reactions to News Stories

Empna في Wassa 2021: نموذج خفيف الوزن لتنبؤ التعاطف والضيق والعواطف من ردود الفعل على القصص الإخبارية

426   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes our submission for the WASSA 2021 shared task regarding the prediction of empathy, distress and emotions from news stories. The solution is based on combining the frequency of words, lexicon-based information, demographics of the annotators and personality of the annotators into a linear model. The prediction of empathy and distress is performed using Linear Regression while the prediction of emotions is performed using Logistic Regression. Both tasks are performed using the same features. Our models rank 4th for the prediction of emotions and 2nd for the prediction of empathy and distress. These results are particularly interesting when considered that the computational requirements of the solution are minimal.



References used
https://aclanthology.org/
rate research

Read More

This paper presents the results that were obtained from the WASSA 2021 shared task on predicting empathy and emotions. The participants were given access to a dataset comprising empathic reactions to news stories where harm is done to a person, group , or other. These reactions consist of essays, Batson empathic concern, and personal distress scores, and the dataset was further extended with news articles, person-level demographic information (age, gender, ethnicity, income, education level), and personality information. Additionally, emotion labels, namely Ekman's six basic emotions, were added to the essays at both the document and sentence level. Participation was encouraged in two tracks: predicting empathy and predicting emotion categories. In total five teams participated in the shared task. We summarize the methods and resources used by the participating teams.
Active research pertaining to the affective phenomenon of empathy and distress is invaluable for improving human-machine interaction. Predicting intensities of such complex emotions from textual data is difficult, as these constructs are deeply roote d in the psychological theory. Consequently, for better prediction, it becomes imperative to take into account ancillary factors such as the psychological test scores, demographic features, underlying latent primitive emotions, along with the text's undertone and its psychological complexity. This paper proffers team PVG's solution to the WASSA 2021 Shared Task on Predicting Empathy and Emotion in Reaction to News Stories. Leveraging the textual data, demographic features, psychological test score, and the intrinsic interdependencies of primitive emotions and empathy, we propose a multi-input, multi-task framework for the task of empathy score prediction. Here, the empathy score prediction is considered the primary task, while emotion and empathy classification are considered secondary auxiliary tasks. For the distress score prediction task, the system is further boosted by the addition of lexical features. Our submission ranked 1st based on the average correlation (0.545) as well as the distress correlation (0.574), and 2nd for the empathy Pearson correlation (0.517).
This paper describes our contribution to the WASSA 2021 shared task on Empathy Prediction and Emotion Classification. The broad goal of this task was to model an empathy score, a distress score and the overall level of emotion of an essay written in response to a newspaper article associated with harm to someone. We have used the ELECTRA model abundantly and also advanced deep learning approaches like multi-task learning. Additionally, we also leveraged standard machine learning techniques like ensembling. Our system achieves a Pearson Correlation Coefficient of 0.533 on sub-task I and a macro F1 score of 0.5528 on sub-task II. We ranked 1st in Emotion Classification sub-task and 3rd in Empathy Prediction sub-task.
Emotion is fundamental to humanity. The ability to perceive, understand and respond to social interactions in a human-like manner is one of the most desired capabilities in artificial agents, particularly in social-media bots. Over the past few years , computational understanding and detection of emotional aspects in language have been vital in advancing human-computer interaction. The WASSA Shared Task 2021 released a dataset of news-stories across two tracks, Track-1 for Empathy and Distress Prediction and Track-2 for Multi-Dimension Emotion prediction at the essay-level. We describe our system entry for the WASSA 2021 Shared Task (for both Track-1 and Track-2), where we leveraged the information from Pre-trained language models for Track-specific Tasks. Our proposed models achieved an Average Pearson Score of 0.417, and a Macro-F1 Score of 0.502 in Track 1 and Track 2, respectively. In the Shared Task leaderboard, we secured the fourth rank in Track 1 and the second rank in Track 2.
Chinese Spelling Check (CSC) is to detect and correct Chinese spelling errors. Many models utilize a predefined confusion set to learn a mapping between correct characters and its visually similar or phonetically similar misuses but the mapping may b e out-of-domain. To that end, we propose SpellBERT, a pretrained model with graph-based extra features and independent on confusion set. To explicitly capture the two erroneous patterns, we employ a graph neural network to introduce radical and pinyin information as visual and phonetic features. For better fusing these features with character representations, we devise masked language model alike pre-training tasks. With this feature-rich pre-training, SpellBERT with only half size of BERT can show competitive performance and make a state-of-the-art result on the OCR dataset where most of the errors are not covered by the existing confusion set.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا