Do you want to publish a course? Click here

Influence of user personality on dialogue task performance: A case study using a rule-based dialogue system

تأثير شخصية المستخدم على أداء مهمة الحوار: دراسة حالة باستخدام نظام حوار يستند إلى القواعد

428   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user personality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants' personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.



References used
https://aclanthology.org/
rate research

Read More

This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr ics, and we analyze several proposed approaches. We distinguish between static ontology DST models, which predict a fixed set of dialogue states, and dynamic ontology models, which can predict dialogue states even when the ontology changes. We also discuss the model's ability to track either single or multiple domains and to scale to new domains, both in terms of knowledge transfer and zero-shot learning. We cover a period from 2013 to 2020, showing a significant increase of multiple domain methods, most of them utilizing pre-trained language models.
There has been significant progress in dialogue systems research. However, dialogue systems research in the healthcare domain is still in its infancy. In this paper, we analyse recent studies and outline three building blocks of a task-oriented dialo gue system in the healthcare domain: i) privacy-preserving data collection; ii) medical knowledge-grounded dialogue management; and iii) human-centric evaluations. To this end, we propose a framework for developing a dialogue system and show preliminary results of simulated dialogue data generation by utilising expert knowledge and crowd-sourcing.
Current approaches to incorporating terminology constraints in machine translation (MT) typically assume that the constraint terms are provided in their correct morphological forms. This limits their application to real-world scenarios where constrai nt terms are provided as lemmas. In this paper, we introduce a modular framework for incorporating lemma constraints in neural MT (NMT) in which linguistic knowledge and diverse types of NMT models can be flexibly applied. It is based on a novel cross-lingual inflection module that inflects the target lemma constraints based on the source context. We explore linguistically motivated rule-based and data-driven neural-based inflection modules and design English-German health and English-Lithuanian news test suites to evaluate them in domain adaptation and low-resource MT settings. Results show that our rule-based inflection module helps NMT models incorporate lemma constraints more accurately than a neural module and outperforms the existing end-to-end approach with lower training costs.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.
As AI reaches wider adoption, designing systems that are explainable and interpretable becomes a critical necessity. In particular, when it comes to dialogue systems, their reasoning must be transparent and must comply with human intuitions in order for them to be integrated seamlessly into day-to-day collaborative human-machine activities. Here, we describe our ongoing work on a (general purpose) dialogue system equipped with a spatial specialist with explanatory capabilities. We applied this system to a particular task of characterizing spatial configurations of blocks in a simple physical Blocks World (BW) domain using natural locative expressions, as well as generating justifications for the proposed spatial descriptions by indicating the factors that the system used to arrive at a particular conclusion.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا