يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. في حين أن محاكاة المستخدمين المشفرة باليد، فقد ثبت أن محاكاة المستخدمين الذين يعتمدون على القواعد كافية في المجالات الصغيرة والبسيطة، لأن عدد القواعد المعقدة بسرعة أصلي. لا تزال محاكاة المستخدم التي يحركها بيانات البيانات، من ناحية أخرى، تعتمد على المجال. هذا يعني أن التكيف مع كل مجال جديد يتطلب إعادة تصميم وإعادة التدريب. في هذا العمل، نقترح محاكاة للمستخدم المستقل المستقل للمجال (TUS). لا يتم ربط هيكل TUS مجال معين، وتمكين تعميم المجال وتعلم سلوك المستخدم عبر المجال من البيانات. نحن نقارن TUS مع أحدث التقيمات التلقائية وكذلك الإنسان. يمكن أن يتنافس TUS مع محاكاة المستخدمين المستند إلى القواعد على المجالات المحددة مسبقا ويمكن أن يعممون إلى المجالات غير المرئية في أزياء صفرية.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.
References used
https://aclanthology.org/
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to
Spoken language understanding, usually including intent detection and slot filling, is a core component to build a spoken dialog system. Recent research shows promising results by jointly learning of those two tasks based on the fact that slot fillin
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr
Incorporating knowledge bases (KB) into end-to-end task-oriented dialogue systems is challenging, since it requires to properly represent the entity of KB, which is associated with its KB context and dialogue context. The existing works represent the