كان هناك تقدم كبير في أبحاث أنظمة الحوار.ومع ذلك، فإن أبحاث أنظمة الحوار في مجال الرعاية الصحية لا تزال في مهدها.في هذه الورقة، نقوم بتحليل الدراسات الحديثة ومخطط لها ثلاثة لبنات بناء نظام حوار موجه نحو المهام في مجال الرعاية الصحية: I) جمع البيانات المحفوظة للحفاظ على الخصوصية؛2) إدارة الحوار المعرفي الطبي؛و 3) التقييمات المراسمة البشرية.تحقيقا لهذه الغاية، نقترح إطارا لتطوير نظام حوار وإظهار النتائج الأولية لتوليد بيانات الحوار المحاكاة عن طريق استخدام المعرفة الخبراء ومصادر الحشد.
There has been significant progress in dialogue systems research. However, dialogue systems research in the healthcare domain is still in its infancy. In this paper, we analyse recent studies and outline three building blocks of a task-oriented dialogue system in the healthcare domain: i) privacy-preserving data collection; ii) medical knowledge-grounded dialogue management; and iii) human-centric evaluations. To this end, we propose a framework for developing a dialogue system and show preliminary results of simulated dialogue data generation by utilising expert knowledge and crowd-sourcing.
References used
https://aclanthology.org/
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to
A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inheren
We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain
As AI reaches wider adoption, designing systems that are explainable and interpretable becomes a critical necessity. In particular, when it comes to dialogue systems, their reasoning must be transparent and must comply with human intuitions in order
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever