Do you want to publish a course? Click here

Rule-based Morphological Inflection Improves Neural Terminology Translation

انعطاف مورفولوجي يستند إلى القواعد يحسن ترجمة المصطلحات العصبية

363   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Current approaches to incorporating terminology constraints in machine translation (MT) typically assume that the constraint terms are provided in their correct morphological forms. This limits their application to real-world scenarios where constraint terms are provided as lemmas. In this paper, we introduce a modular framework for incorporating lemma constraints in neural MT (NMT) in which linguistic knowledge and diverse types of NMT models can be flexibly applied. It is based on a novel cross-lingual inflection module that inflects the target lemma constraints based on the source context. We explore linguistically motivated rule-based and data-driven neural-based inflection modules and design English-German health and English-Lithuanian news test suites to evaluate them in domain adaptation and low-resource MT settings. Results show that our rule-based inflection module helps NMT models incorporate lemma constraints more accurately than a neural module and outperforms the existing end-to-end approach with lower training costs.



References used
https://aclanthology.org/
rate research

Read More

This paper describes the PROMT submissions for the WMT21 Terminology Translation Task. We participate in two directions: English to French and English to Russian. Our final submissions are MarianNMT-based neural systems. We present two technologies f or terminology translation: a modification of the Dinu et al. (2019) soft-constrained approach and our own approach called PROMT Smart Neural Dictionary (SmartND). We achieve good results in both directions.
This paper describes Charles University sub-mission for Terminology translation Shared Task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over all translation quality. We competed in English-French language pair. Our approach is based on providing the desired translations alongside the input sentence and training the model to use these provided terms. We lemmatize the terms both during the training and inference, to allow the model to learn how to produce correct surface forms of the words, when they differ from the forms provided in the terminology database. Our submission ranked second in Exact Match metric which evaluates the ability of the model to produce desired terms in the translation.
A currently popular research area in end-to-end speech translation is the use of knowledge distillation from a machine translation (MT) task to improve the speech translation (ST) task. However, such scenario obviously only allows one way transfer, w hich is limited by the performance of the teacher model. Therefore, We hypothesis that the knowledge distillation-based approaches are sub-optimal. In this paper, we propose an alternative--a trainable mutual-learning scenario, where the MT and the ST models are collaboratively trained and are considered as peers, rather than teacher/student. This allows us to improve the performance of end-to-end ST more effectively than with a teacher-student paradigm. As a side benefit, performance of the MT model also improves. Experimental results show that in our mutual-learning scenario, models can effectively utilise the auxiliary information from peer models and achieve compelling results on Must-C dataset.
Endowing a task-oriented dialogue system with adaptiveness to user personality can greatly help improve the performance of a dialogue task. However, such a dialogue system can be practically challenging to implement, because it is unclear how user pe rsonality influences dialogue task performance. To explore the relationship between user personality and dialogue task performance, we enrolled participants via crowdsourcing to first answer specified personality questionnaires and then chat with a dialogue system to accomplish assigned tasks. A rule-based dialogue system on the prevalent Multi-Domain Wizard-of-Oz (MultiWOZ) task was used. A total of 211 participants' personalities and their 633 dialogues were collected and analyzed. The results revealed that sociable and extroverted people tended to fail the task, whereas neurotic people were more likely to succeed. We extracted features related to user dialogue behaviors and performed further analysis to determine which kind of behavior influences task performance. As a result, we identified that average utterance length and slots per utterance are the key features of dialogue behavior that are highly correlated with both task performance and user personality.
Backtranslation is a common technique for leveraging unlabeled data in low-resource scenarios in machine translation. The method is directly applicable to morphological inflection generation if unlabeled word forms are available. This paper evaluates the potential of backtranslation for morphological inflection using data from six languages with labeled data drawn from the SIGMORPHON shared task resource and unlabeled data from different sources. Our core finding is that backtranslation can offer modest improvements in low-resource scenarios, but only if the unlabeled data is very clean and has been filtered by the same annotation standards as the labeled data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا