Do you want to publish a course? Click here

Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation

Velocidapter: فهم الحوار موجه نحو المهام النمذجة إقران جيل النص الاصطناعي مع التكيف المجال

296   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain, requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.



References used
https://aclanthology.org/
rate research

Read More

Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to frequent changes, and initial training dialogues may soon become obsolete, resulting in a significant decrease in the model performance. In this paper, we investigate the relationship between training dialogues and domain knowledge, and propose Dialogue Domain Adaptation, a methodology aiming at adapting initial training dialogues to changes intervened in the domain knowledge. We focus on slot-value changes (e.g., when new slot values are available to describe domain entities) and define an experimental setting for dialogue domain adaptation. First, we show that current state-of-the-art models for dialogue state tracking are still poorly robust to slot-value changes of the domain knowledge. Then, we compare different domain adaptation strategies, showing that simple techniques are effective to reduce the gap between training dialogues and domain knowledge.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.
Spoken language understanding, usually including intent detection and slot filling, is a core component to build a spoken dialog system. Recent research shows promising results by jointly learning of those two tasks based on the fact that slot fillin g and intent detection are sharing semantic knowledge. Furthermore, attention mechanism boosts joint learning to achieve state-of-the-art results. However, current joint learning models ignore the following important facts: 1. Long-term slot context is not traced effectively, which is crucial for future slot filling. 2. Slot tagging and intent detection could be mutually rewarding, but bi-directional interaction between slot filling and intent detection remains seldom explored. In this paper, we propose a novel approach to model long-term slot context and to fully utilize the semantic correlation between slots and intents. We adopt a key-value memory network to model slot context dynamically and to track more important slot tags decoded before, which are then fed into our decoder for slot tagging. Furthermore, gated memory information is utilized to perform intent detection, mutually improving both tasks through global optimization. Experiments on benchmark ATIS and Snips datasets show that our model achieves state-of-the-art performance and outperforms other methods, especially for the slot filling task.
There has been significant progress in dialogue systems research. However, dialogue systems research in the healthcare domain is still in its infancy. In this paper, we analyse recent studies and outline three building blocks of a task-oriented dialo gue system in the healthcare domain: i) privacy-preserving data collection; ii) medical knowledge-grounded dialogue management; and iii) human-centric evaluations. To this end, we propose a framework for developing a dialogue system and show preliminary results of simulated dialogue data generation by utilising expert knowledge and crowd-sourcing.
A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inheren t differences between them, such as coreference, omission and diversity expression. In this paper, we propose a Dialogue Task Clustering Network model for task-oriented clustering. The proposed model combines context-aware utterance representations and cross-dialogue utterance cluster representations for task-oriented dialogues clustering. An iterative end-to-end training strategy is utilized for dialogue clustering and representation learning jointly. Experiments on three public datasets show that our model significantly outperform strong baselines in all metrics.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا