يمكن أن تساعد خوارزمية تجميع موثوقة للحوارات الموجهة نحو المهام في تحليل المطور وتحديد مهام الحوار بكفاءة.من الصعب مباشرة تطبيق خوارزميات تجميع النص العادي المسبق للحوارات الموجهة نحو المهام، بسبب الاختلافات الكامنة بينهما، مثل COMERELER، إغفال وتعبير التنوع.في هذه الورقة، نقترح نموذج شبكة حوار تجميع مهمة التجميع للتجميع الموجه في المهام.يجمع النموذج المقترح بين تمثيلات الكلام على دراية السياق والتحويل عبر الحوار عن تجميع الحوارات الموجهة نحو المهام.تستخدم استراتيجية تدريبية تكرارية نهاية لإنهاء تجميع الحوار وتعلم التمثيل بشكل مشترك.تظهر التجارب في ثلاث مجموعات بيانات عامة أن نموذجنا يتفوق بشكل كبير على خطوط أساسية قوية في جميع المقاييس.
A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inherent differences between them, such as coreference, omission and diversity expression. In this paper, we propose a Dialogue Task Clustering Network model for task-oriented clustering. The proposed model combines context-aware utterance representations and cross-dialogue utterance cluster representations for task-oriented dialogues clustering. An iterative end-to-end training strategy is utilized for dialogue clustering and representation learning jointly. Experiments on three public datasets show that our model significantly outperform strong baselines in all metrics.
References used
https://aclanthology.org/
There has been significant progress in dialogue systems research. However, dialogue systems research in the healthcare domain is still in its infancy. In this paper, we analyse recent studies and outline three building blocks of a task-oriented dialo
This paper presents an automatic method to evaluate the naturalness of natural language generation in dialogue systems. While this task was previously rendered through expensive and time-consuming human labor, we present this novel task of automatic
We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain
Generative models for dialog systems have gained much interest because of the recent success of RNN and Transformer based models in tasks like question answering and summarization. Although the task of dialog response generation is generally seen as
Further pre-training language models on in-domain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pre-training, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriente