يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار الموجهة نحو المهام مع أن يتم تعلم 37 نطما بشكل مستمر في إعدادات التعلم المعدلة والنهاية. بالإضافة إلى ذلك، نقوم بتنفيذ ومقارنة خطوط أساسيات التعلم المستمرة المتعددة، ونقترحنا طريقة معمارية بسيطة ولكنها فعالة تعتمد على المحولات المتبقية. نشير أيضا إلى أن الأداء العلوي للتعلم المستمر يجب أن يكون يعادل التعلم المتعدد المهام عند توفر البيانات من جميع المجال في وقت واحد. توضح تجاربنا أن الطريقة المعمارية المقترحة وإجراءات استراتيجية تستند إلى إعادة التشغيل بسيطة تؤدي بشكل أفضل، من خلال هامش كبير، مقارنة بتقنيات التعلم المستمرة الأخرى، وأسوأ قليلا قليلا من العلوي المتعدد التعلم العلوي أثناء كونه 20x بشكل أسرع في تعلم النطاقات الجديدة. نحن نبلغ أيضا العديد من المفاضلات من حيث استخدام المعلمة وحجم الذاكرة ووقت التدريب، وهي مهمة في تصميم نظام حوار موجه نحو المهام. يتم إصدار المعيار المقترح لتعزيز المزيد من البحث في هذا الاتجاه.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in both modularized and end-to-end learning settings. In addition, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. We also suggest that the upper bound performance of continual learning should be equivalent to multitask learning when data from all domain is available at once. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform better, by a large margin, compared to other continuous learning techniques, and only slightly worse than the multitask learning upper bound while being 20X faster in learning new domains. We also report several trade-offs in terms of parameter usage, memory size and training time, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released to promote more research in this direction.
References used
https://aclanthology.org/
Abstract Task-oriented dialog (TOD) systems often need to formulate knowledge base (KB) queries corresponding to the user intent and use the query results to generate system responses. Existing approaches require dialog datasets to explicitly annotat
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user
Spoken language understanding, usually including intent detection and slot filling, is a core component to build a spoken dialog system. Recent research shows promising results by jointly learning of those two tasks based on the fact that slot fillin