من أجل توفير الرعاية عالية الجودة، يجب على المهنيين الصحيين تحديد الوجود أو احتمال أو عدم وجود الأعراض والعلاجات وغيرها من الكيانات ذات الصلة في الملاحظات السريرية النصية.هذه هي مهمة اكتشاف التأكيد - لتحديد فئة التأكيد (الحاضر، ممكن، غائبة) من كيان بناء على إشارات نصية في النص غير المنظم.نقيم نماذج اللغة الطبية الحديثة في المهمة وإظهار أنها تتفوق على الأساس في جميع الفئات الثلاثة.نظرا لأن قابلية النقل مهمة بشكل خاص في المجال الطبي، فإننا ندرس كيفية تصرف أفضل نموذج أداء على البيانات غير المرئية من مجموعات بيانات طبية أخرى.لهذا الغرض، نقدم مجموعة مشروحة حديثا من 5000 تأكيد لمجموعة بيانات MIMIC-III المتاحة للجمهور.نستنتج مع تحليل خطأ يكشف المواقف التي لا تزال النماذج خاطئة ونقاط نحو اتجاهات البحث في المستقبل.
In order to provide high-quality care, health professionals must efficiently identify the presence, possibility, or absence of symptoms, treatments and other relevant entities in free-text clinical notes. Such is the task of assertion detection - to identify the assertion class (present, possible, absent) of an entity based on textual cues in unstructured text. We evaluate state-of-the-art medical language models on the task and show that they outperform the baselines in all three classes. As transferability is especially important in the medical domain we further study how the best performing model behaves on unseen data from two other medical datasets. For this purpose we introduce a newly annotated set of 5,000 assertions for the publicly available MIMIC-III dataset. We conclude with an error analysis that reveals situations in which the models still go wrong and points towards future research directions.
References used
https://aclanthology.org/
In recent years pre-trained language models (PLM) such as BERT have proven to be very effective in diverse NLP tasks such as Information Extraction, Sentiment Analysis and Question Answering. Trained with massive general-domain text, these pre-traine
This paper presents a reference study of available algorithms for plagiarism
detection and it develops semantic plagiarism detection algorithm for plagiarism detection
in medical research papers by employing the Medical Ontologies available on the
Legal texts routinely use concepts that are difficult to understand. Lawyers elaborate on the meaning of such concepts by, among other things, carefully investigating how they have been used in the past. Finding text snippets that mention a particula
Identification of lexical borrowings, transfer of words between languages, is an essential practice of historical linguistics and a vital tool in analysis of language contact and cultural events in general. We seek to improve tools for automatic dete
The factual knowledge acquired during pre-training and stored in the parameters of Language Models (LMs) can be useful in downstream tasks (e.g., question answering or textual inference). However, some facts can be incorrectly induced or become obsol