في السنوات الأخيرة، أثبتت نماذج اللغة المدربة مسبقا (PLM) مثل بيرت فعالة للغاية في مهام NLP المتنوعة مثل استخراج المعلومات وتحليل المعنويات والرد على الأسئلة.تدربت مع نص المجال العام الضخم، هذه النماذج اللغوية المدربة مسبقا تلتقط معلومات النحوية والدلية والجلطة الغنية في النص.ومع ذلك، نظرا للاختلافات بين نص مجال عام ومحدد (E.G.، Wikipedia مقابل ملاحظات عيادة)، قد لا تكون هذه النماذج مثالية للمهام الخاصة بالمجال (على سبيل المثال، استخراج العلاقات السريرية).علاوة على ذلك، قد يتطلب الأمر معرفة طبية إضافية لفهم النص السريري بشكل صحيح.لحل هذه القضايا، في هذا البحث، نقوم بإجراء فحص شامل للتقنيات المختلفة لإضافة المعرفة الطبية إلى نموذج برت مدرب مسبقا لاستخراج العلاقات السريرية.تتفوق أفضل طرازنا على مجموعة بيانات استخراج الحالة الإكلينيكية من أحدث طراز I2B2 / VA 2010.
In recent years pre-trained language models (PLM) such as BERT have proven to be very effective in diverse NLP tasks such as Information Extraction, Sentiment Analysis and Question Answering. Trained with massive general-domain text, these pre-trained language models capture rich syntactic, semantic and discourse information in the text. However, due to the differences between general and specific domain text (e.g., Wikipedia versus clinic notes), these models may not be ideal for domain-specific tasks (e.g., extracting clinical relations). Furthermore, it may require additional medical knowledge to understand clinical text properly. To solve these issues, in this research, we conduct a comprehensive examination of different techniques to add medical knowledge into a pre-trained BERT model for clinical relation extraction. Our best model outperforms the state-of-the-art systems on the benchmark i2b2/VA 2010 clinical relation extraction dataset.
References used
https://aclanthology.org/
In this paper, we propose a knowledge infusion mechanism to incorporate domain knowledge into language transformers. Weakly supervised data is regarded as the main source for knowledge acquisition. We pre-train the language models to capture masked k
Incorporating lexical knowledge into deep learning models has been proved to be very effective for sequence labeling tasks. However, previous works commonly have difficulty dealing with large-scale dynamic lexicons which often cause excessive matchin
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it in
Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language infe
In order to provide high-quality care, health professionals must efficiently identify the presence, possibility, or absence of symptoms, treatments and other relevant entities in free-text clinical notes. Such is the task of assertion detection - to