Do you want to publish a course? Click here

NPVec1: Word Embeddings for Nepali - Construction and Evaluation

NPVEC1: Word Embeddings للنيبالية - البناء والتقييم

284   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Word Embedding maps words to vectors of real numbers. It is derived from a large corpus and is known to capture semantic knowledge from the corpus. Word Embedding is a critical component of many state-of-the-art Deep Learning techniques. However, generating good Word Embeddings is a special challenge for low-resource languages such as Nepali due to the unavailability of large text corpus. In this paper, we present NPVec1 which consists of 25 state-of-art Word Embeddings for Nepali that we have derived from a large corpus using Glove, Word2Vec, FastText, and BERT. We further provide intrinsic and extrinsic evaluations of these Embeddings using well established metrics and methods. These models are trained using 279 million word tokens and are the largest Embeddings ever trained for Nepali language. Furthermore, we have made these Embeddings publicly available to accelerate the development of Natural Language Processing (NLP) applications in Nepali.



References used
https://aclanthology.org/
rate research

Read More

We present Query2Prod2Vec, a model that grounds lexical representations for product search in product embeddings: in our model, meaning is a mapping between words and a latent space of products in a digital shop. We leverage shopping sessions to lear n the underlying space and use merchandising annotations to build lexical analogies for evaluation: our experiments show that our model is more accurate than known techniques from the NLP and IR literature. Finally, we stress the importance of data efficiency for product search outside of retail giants, and highlight how Query2Prod2Vec fits with practical constraints faced by most practitioners.
Identifying intertextual relationships between authors is of central importance to the study of literature. We report an empirical analysis of intertextuality in classical Latin literature using word embedding models. To enable quantitative evaluatio n of intertextual search methods, we curate a new dataset of 945 known parallels drawn from traditional scholarship on Latin epic poetry. We train an optimized word2vec model on a large corpus of lemmatized Latin, which achieves state-of-the-art performance for synonym detection and outperforms a widely used lexical method for intertextual search. We then demonstrate that training embeddings on very small corpora can capture salient aspects of literary style and apply this approach to replicate a previous intertextual study of the Roman historian Livy, which relied on hand-crafted stylometric features. Our results advance the development of core computational resources for a major premodern language and highlight a productive avenue for cross-disciplinary collaboration between the study of literature and NLP.
We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vect or space using an efficient implementation of the Generalized Procrustes Analysis (GPA) procedure, previously used in multilingual word translation. Our word representation demonstrates consistent improvements over the raw models as well as their simplistic average, on a range of tasks. As the new representations are more stable and reliable, there is a noticeable improvement in rare word evaluations.
Language representations are known to carry stereotypical biases and, as a result, lead to biased predictions in downstream tasks. While existing methods are effective at mitigating biases by linear projection, such methods are too aggressive: they n ot only remove bias, but also erase valuable information from word embeddings. We develop new measures for evaluating specific information retention that demonstrate the tradeoff between bias removal and information retention. To address this challenge, we propose OSCaR (Orthogonal Subspace Correction and Rectification), a bias-mitigating method that focuses on disentangling biased associations between concepts instead of removing concepts wholesale. Our experiments on gender biases show that OSCaR is a well-balanced approach that ensures that semantic information is retained in the embeddings and bias is also effectively mitigated.
Detecting lexical semantic change in smaller data sets, e.g. in historical linguistics and digital humanities, is challenging due to a lack of statistical power. This issue is exacerbated by non-contextual embedding models that produce one embedding per word and, therefore, mask the variability present in the data. In this article, we propose an approach to estimate semantic shift by combining contextual word embeddings with permutation-based statistical tests. We use the false discovery rate procedure to address the large number of hypothesis tests being conducted simultaneously. We demonstrate the performance of this approach in simulation where it achieves consistently high precision by suppressing false positives. We additionally analyze real-world data from SemEval-2020 Task 1 and the Liverpool FC subreddit corpus. We show that by taking sample variation into account, we can improve the robustness of individual semantic shift estimates without degrading overall performance.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا