Do you want to publish a course? Click here

OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings

أوسكار: تصحيح الفضاء الفرعي المتعامدة وتصحيح التحيزات في Word Embeddings

296   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language representations are known to carry stereotypical biases and, as a result, lead to biased predictions in downstream tasks. While existing methods are effective at mitigating biases by linear projection, such methods are too aggressive: they not only remove bias, but also erase valuable information from word embeddings. We develop new measures for evaluating specific information retention that demonstrate the tradeoff between bias removal and information retention. To address this challenge, we propose OSCaR (Orthogonal Subspace Correction and Rectification), a bias-mitigating method that focuses on disentangling biased associations between concepts instead of removing concepts wholesale. Our experiments on gender biases show that OSCaR is a well-balanced approach that ensures that semantic information is retained in the embeddings and bias is also effectively mitigated.



References used
https://aclanthology.org/
rate research

Read More

Word embeddings are widely used in Natural Language Processing (NLP) for a vast range of applications. However, it has been consistently proven that these embeddings reflect the same human biases that exist in the data used to train them. Most of the introduced bias indicators to reveal word embeddings' bias are average-based indicators based on the cosine similarity measure. In this study, we examine the impacts of different similarity measures as well as other descriptive techniques than averaging in measuring the biases of contextual and non-contextual word embeddings. We show that the extent of revealed biases in word embeddings depends on the descriptive statistics and similarity measures used to measure the bias. We found that over the ten categories of word embedding association tests, Mahalanobis distance reveals the smallest bias, and Euclidean distance reveals the largest bias in word embeddings. In addition, the contextual models reveal less severe biases than the non-contextual word embedding models.
Word Embedding maps words to vectors of real numbers. It is derived from a large corpus and is known to capture semantic knowledge from the corpus. Word Embedding is a critical component of many state-of-the-art Deep Learning techniques. However, gen erating good Word Embeddings is a special challenge for low-resource languages such as Nepali due to the unavailability of large text corpus. In this paper, we present NPVec1 which consists of 25 state-of-art Word Embeddings for Nepali that we have derived from a large corpus using Glove, Word2Vec, FastText, and BERT. We further provide intrinsic and extrinsic evaluations of these Embeddings using well established metrics and methods. These models are trained using 279 million word tokens and are the largest Embeddings ever trained for Nepali language. Furthermore, we have made these Embeddings publicly available to accelerate the development of Natural Language Processing (NLP) applications in Nepali.
We present Query2Prod2Vec, a model that grounds lexical representations for product search in product embeddings: in our model, meaning is a mapping between words and a latent space of products in a digital shop. We leverage shopping sessions to lear n the underlying space and use merchandising annotations to build lexical analogies for evaluation: our experiments show that our model is more accurate than known techniques from the NLP and IR literature. Finally, we stress the importance of data efficiency for product search outside of retail giants, and highlight how Query2Prod2Vec fits with practical constraints faced by most practitioners.
Identifying intertextual relationships between authors is of central importance to the study of literature. We report an empirical analysis of intertextuality in classical Latin literature using word embedding models. To enable quantitative evaluatio n of intertextual search methods, we curate a new dataset of 945 known parallels drawn from traditional scholarship on Latin epic poetry. We train an optimized word2vec model on a large corpus of lemmatized Latin, which achieves state-of-the-art performance for synonym detection and outperforms a widely used lexical method for intertextual search. We then demonstrate that training embeddings on very small corpora can capture salient aspects of literary style and apply this approach to replicate a previous intertextual study of the Roman historian Livy, which relied on hand-crafted stylometric features. Our results advance the development of core computational resources for a major premodern language and highlight a productive avenue for cross-disciplinary collaboration between the study of literature and NLP.
We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vect or space using an efficient implementation of the Generalized Procrustes Analysis (GPA) procedure, previously used in multilingual word translation. Our word representation demonstrates consistent improvements over the raw models as well as their simplistic average, on a range of tasks. As the new representations are more stable and reliable, there is a noticeable improvement in rare word evaluations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا