Do you want to publish a course? Click here

Were We There Already? Applying Minimal Generalization to the SIGMORPHON-UniMorph Shared Task on Cognitively Plausible Morphological Inflection

هل نحن هناك بالفعل؟تطبيق الحد الأدنى من التعميم على المهمة المشتركة SIGMORPHON-UNIMORPH على الانعكاس المورفولوجي المعقول معلي

275   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Morphological rules with various levels of specificity can be learned from example lexemes by recursive application of minimal generalization (Albright and Hayes, 2002, 2003).A model that learns rules solely through minimal generalization was used to predict average human wug-test ratings from German, English, and Dutch in the SIGMORPHON-UniMorph 2021 Shared Task, with competitive results. Some formal properties of the minimal generalization operation were proved. An automatic method was developed to create wug-test stimuli for future experiments that investigate whether the model's morphological generalizations are too minimal.



References used
https://aclanthology.org/
rate research

Read More

We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we re lease corpora for 5 development and 9 test languages, as well as gold partial paradigms for evaluation. We receive 14 submissions from 4 teams that follow different strategies, and the best performing system is based on adaptor grammars. Results vary significantly across languages. However, all systems are outperformed by a supervised lemmatizer, implying that there is still room for improvement.
We present the BME submission for the SIGMORPHON 2021 Task 0 Part 1, Generalization Across Typologically Diverse Languages shared task. We use an LSTM encoder-decoder model with three step training that is first trained on all languages, then fine-tu ned on each language family and finally fine-tuned on individual languages. We use a different type of data augmentation technique in the first two steps. Our system outperformed the only other submission. Although it remains worse than the Transformer baseline released by the organizers, our model is simpler and our data augmentation techniques are easily applicable to new languages. We perform ablation studies and show that the augmentation techniques and the three training steps often help but sometimes have a negative effect. Our code is publicly available.
The paper presents four models submitted to Part 2 of the SIGMORPHON 2021 Shared Task 0, which aims at replicating human judgements on the inflection of nonce lexemes. Our goal is to explore the usefulness of combining pre-compiled analogical pattern s with an encoder-decoder architecture. Two models are designed using such patterns either in the input or the output of the network. Two extra models controlled for the role of raw similarity of nonce inflected forms to existing inflected forms in the same paradigm cell, and the role of the type frequency of analogical patterns. Our strategy is entirely endogenous in the sense that the models appealing solely to the data provided by the SIGMORPHON organisers, without using external resources. Our model 2 ranks second among all submitted systems, suggesting that the inclusion of analogical patterns in the network architecture is useful in mimicking speakers' predictions.
This paper describes the submission by the team from the Department of Computational Linguistics, Zurich University, to the Multilingual Grapheme-to-Phoneme Conversion (G2P) Task 1 of the SIGMORPHON 2021 challenge in the low and medium settings. The submission is a variation of our 2020 G2P system, which serves as the baseline for this year's challenge. The system is a neural transducer that operates over explicit edit actions and is trained with imitation learning. For this challenge, we experimented with the following changes: a) emitting phoneme segments instead of single character phonemes, b) input character dropout, c) a mogrifier LSTM decoder (Melis et al., 2019), d) enriching the decoder input with the currently attended input character, e) parallel BiLSTM encoders, and f) an adaptive batch size scheduler. In the low setting, our best ensemble improved over the baseline, however, in the medium setting, the baseline was stronger on average, although for certain languages improvements could be observed.
In this paper, we present the joint contribution of Unbabel and IST to the WMT 2021 Metrics Shared Task. With this year's focus on Multidimensional Quality Metric (MQM) as the ground-truth human assessment, our aim was to steer COMET towards higher c orrelations with MQM. We do so by first pre-training on Direct Assessments and then fine-tuning on z-normalized MQM scores. In our experiments we also show that reference-free COMET models are becoming competitive with reference-based models, even outperforming the best COMET model from 2020 on this year's development data. Additionally, we present COMETinho, a lightweight COMET model that is 19x faster on CPU than the original model, while also achieving state-of-the-art correlations with MQM. Finally, in the QE as a metric'' track, we also participated with a QE model trained using the OpenKiwi framework leveraging MQM scores and word-level annotations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا