Do you want to publish a course? Click here

CLUZH at SIGMORPHON 2021 Shared Task on Multilingual Grapheme-to-Phoneme Conversion: Variations on a Baseline

CLUZH في Sigmorphon 2021 المهمة المشتركة على تحويل Grapheme-To-Voneme متعدد اللغات: الاختلافات على خط الأساس

279   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the submission by the team from the Department of Computational Linguistics, Zurich University, to the Multilingual Grapheme-to-Phoneme Conversion (G2P) Task 1 of the SIGMORPHON 2021 challenge in the low and medium settings. The submission is a variation of our 2020 G2P system, which serves as the baseline for this year's challenge. The system is a neural transducer that operates over explicit edit actions and is trained with imitation learning. For this challenge, we experimented with the following changes: a) emitting phoneme segments instead of single character phonemes, b) input character dropout, c) a mogrifier LSTM decoder (Melis et al., 2019), d) enriching the decoder input with the currently attended input character, e) parallel BiLSTM encoders, and f) an adaptive batch size scheduler. In the low setting, our best ensemble improved over the baseline, however, in the medium setting, the baseline was stronger on average, although for certain languages improvements could be observed.



References used
https://aclanthology.org/
rate research

Read More

This paper documents the UBC Linguistics team's approach to the SIGMORPHON 2021 Grapheme-to-Phoneme Shared Task, concentrating on the low-resource setting. Our systems expand the baseline model with simple modifications informed by syllable structure and error analysis. In-depth investigation of test-set predictions shows that our best model rectifies a significant number of mistakes compared to the baseline prediction, besting all other submissions. Our results validate the view that careful error analysis in conjunction with linguistic knowledge can lead to more effective computational modeling.
We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we re lease corpora for 5 development and 9 test languages, as well as gold partial paradigms for evaluation. We receive 14 submissions from 4 teams that follow different strategies, and the best performing system is based on adaptor grammars. Results vary significantly across languages. However, all systems are outperformed by a supervised lemmatizer, implying that there is still room for improvement.
We present the results of the first task on Large-Scale Multilingual Machine Translation. The task consists on the many-to-many evaluation of a single model across a variety of source and target languages. This year, the task consisted on three diffe rent settings: (i) SMALL-TASK1 (Central/South-Eastern European Languages), (ii) the SMALL-TASK2 (South-East Asian Languages), and (iii) FULL-TASK (all 101 x 100 language pairs). All the tasks used the FLORES-101 dataset as the evaluation benchmark. To ensure the longevity of the dataset, the test sets were not publicly released and the models were evaluated in a controlled environment on Dynabench. There were a total of 10 participating teams for the tasks, with a total of 151 intermediate model submissions and 13 final models. This year's result show a significant improvement over the known base-lines with +17.8 BLEU for SMALL-TASK2, +10.6 for FULL-TASK and +3.6 for SMALL-TASK1.
In this paper we explore a very simple neural approach to mapping orthography to phonetic transcription in a low-resource context. The basic idea is to start from a baseline system and focus all efforts on data augmentation. We will see that some techniques work, but others do not.
This paper present a description for the ROCLING 2021 shared task in dimensional sentiment analysis for educational texts. We submitted two runs in the final test. Both runs use the standard regression model. The Run1 uses Chinese version of BERT as the base, and in Run2 we use the early version of MacBERT that Chinese version of RoBERTa-like BERT model, RoBERTa-wwm-ext. Using powerful pre-training model of BERT for text embedding to help train the model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا