في هذه الورقة، نقدم مساهمة مشتركة من المهمة المشتركة ومقاييس WMT 2021.مع تركيز هذا العام على متري الجودة متعددة الأبعاد (MQM) باعتباره التقييم البشري الحقيقة الأرضية، كان هدفنا هو توجيه المذنب نحو الارتباطات الأعلى مع MQM.نحن نقوم بذلك عن طريق التدريب المسبق أولا على التقييمات المباشرة ثم ضبط نتائج MQM تطبيع Z.في تجاربنا، نعرض أيضا أن نماذج المذنب المجانية المرجعية أصبحت تنافسية للنماذج القائمة على المراجع، حتى تتفوق على أفضل نموذج مذنب من عام 2020 في بيانات تطوير هذا العام.بالإضافة إلى ذلك، نقدم Cometinho، وهو نموذج مذنب خفيف الوزن هو 19x أسرع في وحدة المعالجة المركزية من النموذج الأصلي، مع تحقيق الارتباطات الحديثة أيضا مع MQM.أخيرا، في QE كمسار متري، شاركنا أيضا مع نموذج QE المدرب باستخدام إطار OpenKiwi الاستفادة من درجات MQM وشروح مستوى الكلمة.
In this paper, we present the joint contribution of Unbabel and IST to the WMT 2021 Metrics Shared Task. With this year's focus on Multidimensional Quality Metric (MQM) as the ground-truth human assessment, our aim was to steer COMET towards higher correlations with MQM. We do so by first pre-training on Direct Assessments and then fine-tuning on z-normalized MQM scores. In our experiments we also show that reference-free COMET models are becoming competitive with reference-based models, even outperforming the best COMET model from 2020 on this year's development data. Additionally, we present COMETinho, a lightweight COMET model that is 19x faster on CPU than the original model, while also achieving state-of-the-art correlations with MQM. Finally, in the QE as a metric'' track, we also participated with a QE model trained using the OpenKiwi framework leveraging MQM scores and word-level annotations.
References used
https://aclanthology.org/
We present the joint contribution of IST and Unbabel to the WMT 2021 Shared Task on Quality Estimation. Our team participated on two tasks: Direct Assessment and Post-Editing Effort, encompassing a total of 35 submissions. For all submissions, our ef
This paper describes Papago submission to the WMT 2021 Quality Estimation Task 1: Sentence-level Direct Assessment. Our multilingual Quality Estimation system explores the combination of Pretrained Language Models and Multi-task Learning architecture
In this paper, we describe our submission to the WMT 2021 Metrics Shared Task. We use the automatically-generated questions and answers to evaluate the quality of Machine Translation (MT) systems. Our submission builds upon the recently proposed MTEQ
This paper presents the ROCLING 2021 shared task on dimensional sentiment analysis for educational texts which seeks to identify a real-value sentiment score of self-evaluation comments written by Chinese students in the both valence and arousal dime
This paper presents the JHU-Microsoft joint submission for WMT 2021 quality estimation shared task. We only participate in Task 2 (post-editing effort estimation) of the shared task, focusing on the target-side word-level quality estimation. The tech