نقدم تقديم BME لمهمة Sigmorphon 2021 0 الجزء 1، التعميم عبر المهمة المشتركة بين اللغات المتنوعة من الناحية النموذجية.نحن نستخدم نموذج فك تشفير LSTM مع ثلاثة خطوات التدريب المدرب لأول مرة على جميع اللغات، ثم ضبطها على كل عائلة لغة وأخيرا ضبطها على اللغات الفردية.نستخدم نوع مختلف من تقنية تكبير البيانات في الخطوتين الأولين.تفوق نظامنا على التقديم الآخر الوحيد.على الرغم من أنه لا يزال أسوأ من خط الأساس المحول الذي أصدره المنظمون، فإن نموذجنا أبسط وأن تقنياتنا تكبير البيانات تنطبق بسهولة على لغات جديدة.نقوم بإجراء دراسات الاجتثاث وإظهار أن تقنيات المعزز والخطوات التدريبية الثلاثة غالبا ما تساعد ولكن في بعض الأحيان يكون لها تأثير سلبي.رمز لدينا هو متاح علنا.
We present the BME submission for the SIGMORPHON 2021 Task 0 Part 1, Generalization Across Typologically Diverse Languages shared task. We use an LSTM encoder-decoder model with three step training that is first trained on all languages, then fine-tuned on each language family and finally fine-tuned on individual languages. We use a different type of data augmentation technique in the first two steps. Our system outperformed the only other submission. Although it remains worse than the Transformer baseline released by the organizers, our model is simpler and our data augmentation techniques are easily applicable to new languages. We perform ablation studies and show that the augmentation techniques and the three training steps often help but sometimes have a negative effect. Our code is publicly available.
References used
https://aclanthology.org/
We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we re
Morphological rules with various levels of specificity can be learned from example lexemes by recursive application of minimal generalization (Albright and Hayes, 2002, 2003).A model that learns rules solely through minimal generalization was used to
We present the joint contribution of IST and Unbabel to the WMT 2021 Shared Task on Quality Estimation. Our team participated on two tasks: Direct Assessment and Post-Editing Effort, encompassing a total of 35 submissions. For all submissions, our ef
This paper describes the submission by the team from the Department of Computational Linguistics, Zurich University, to the Multilingual Grapheme-to-Phoneme Conversion (G2P) Task 1 of the SIGMORPHON 2021 challenge in the low and medium settings. The
This paper describes and examines different systems to address Task 6 of SemEval-2021: Detection of Persuasion Techniques In Texts And Images, Subtask 1. The task aims to build a model for identifying rhetorical and psycho- logical techniques (such a