يمكن أن يكون تعيين مواقع المستخدمين إلى البلدان مفيدا للعديد من التطبيقات مثل تحديد الهدوء ومجموعات المؤلف ونظام التوصية وما إلى ذلك. يسمح Twitter للمستخدمين بإعلان مواقعهم كنصا مجانيا، وغالبا ما تكون هذه المواقع المعلنة من المستخدم صاخبة وصعبة للغاية.في هذه الورقة، نقدم أكبر مجموعة بيانات المسمى يدويا لعودة مواقع المستخدمين على Twitter العربي إلى بلدانهم المقابلة.نبني نماذج تعليمية فعالة من الآلات التي يمكنها أتمتة هذا التعيين كفاءة أفضل بكثير مقارنة بمكتبات مثل Geopy.نظهر أيضا أن DataSet لدينا أكثر فعالية من البيانات المستخرجة من قاعدة بيانات Geonames الجغرافية في هذه المهمة حيث يغطي الأخير المواقع المكتوبة بطرق رسمية فقط.
Mapping user locations to countries can be useful for many applications such as dialect identification, author profiling, recommendation system, etc. Twitter allows users to declare their locations as free text, and these user-declared locations are often noisy and hard to decipher automatically. In this paper, we present the largest manually labeled dataset for mapping user locations on Arabic Twitter to their corresponding countries. We build effective machine learning models that can automate this mapping with significantly better efficiency compared to libraries such as geopy. We also show that our dataset is more effective than data extracted from GeoNames geographical database in this task as the latter covers only locations written in formal ways.
References used
https://aclanthology.org/
In this paper we explore a very simple neural approach to mapping orthography to phonetic transcription in a low-resource context. The basic idea is to start from a baseline system and focus all efforts on data augmentation. We will see that some techniques work, but others do not.
Computational social science studies often contextualize content analysis within standard demographics. Since demographics are unavailable on many social media platforms (e.g. Twitter), numerous studies have inferred demographics automatically. Despi
The paper reports on the methodology and final results of a large-scale synset mapping between plWordNet and Princeton WordNet. Dedicated manual and semi-automatic mapping procedures as well as interlingual relation types for nouns, verbs, adjectives and adverbs are described. The statistics of all types of interlingual relations are also provided.
State-of-the-art multilingual systems rely on shared vocabularies that sufficiently cover all considered languages. To this end, a simple and frequently used approach makes use of subword vocabularies constructed jointly over several languages. We hy
Logical Observation Identifiers Names and Codes (LOINC) is a standard set of codes that enable clinicians to communicate about medical tests. Laboratories depend on LOINC to identify what tests a doctor orders for a patient. However, clinicians often