Do you want to publish a course? Click here

Applied Medical Code Mapping with Character-based Deep Learning Models and Word-based Logic

رسم الخرائط التعليمية الطبية مع نماذج التعلم العميق القائمة على الحرف والمنطق المستندة إلى الكلمة

338   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Logical Observation Identifiers Names and Codes (LOINC) is a standard set of codes that enable clinicians to communicate about medical tests. Laboratories depend on LOINC to identify what tests a doctor orders for a patient. However, clinicians often use site specific, custom codes in their medical records systems that can include shorthand, spelling mistakes, and invented acronyms. Software solutions must map from these custom codes to the LOINC standard to support data interoperability. A key challenge is that LOINC is comprised of six elements. Mapping requires not only extracting those elements, but also combining them according to LOINC logic. We found that character-based deep learning excels at extracting LOINC elements while logic based methods are more effective for combining those elements into complete LOINC values. In this paper, we present an ensemble of machine learning and logic that is currently used in several medical facilities to map from



References used
https://aclanthology.org/
rate research

Read More

Character-based word-segmentation models have been extensively applied to agglutinative languages, including Thai, due to their high performance. These models estimate word boundaries from a character sequence. However, a character unit in sequences has no essential meaning, compared with word, subword, and character cluster units. We propose a Thai word-segmentation model that uses various types of information, including words, subwords, and character clusters, from a character sequence. Our model applies multiple attentions to refine segmentation inferences by estimating the significant relationships among characters and various unit types. The experimental results indicate that our model can outperform other state-of-the-art Thai word-segmentation models.
Deep neural language models such as BERT have enabled substantial recent advances in many natural language processing tasks. However, due to the effort and computational cost involved in their pre-training, such models are typically introduced only f or a small number of high-resource languages such as English. While multilingual models covering large numbers of languages are available, recent work suggests monolingual training can produce better models, and our understanding of the tradeoffs between mono- and multilingual training is incomplete. In this paper, we introduce a simple, fully automated pipeline for creating language-specific BERT models from Wikipedia data and introduce 42 new such models, most for languages up to now lacking dedicated deep neural language models. We assess the merits of these models using cloze tests and the state-of-the-art UDify parser on Universal Dependencies data, contrasting performance with results using the multilingual BERT (mBERT) model. We find that the newly introduced WikiBERT models outperform mBERT in cloze tests for nearly all languages, and that UDify using WikiBERT models outperforms the parser using mBERT on average, with the language-specific models showing substantially improved performance for some languages, yet limited improvement or a decrease in performance for others. All of the methods and models introduced in this work are available under open licenses from https://github.com/turkunlp/wikibert.
Medical simulators provide a controlled environment for training and assessing clinical skills. However, as an assessment platform, it requires the presence of an experienced examiner to provide performance feedback, commonly preformed using a task s pecific checklist. This makes the assessment process inefficient and expensive. Furthermore, this evaluation method does not provide medical practitioners the opportunity for independent training. Ideally, the process of filling the checklist should be done by a fully-aware objective system, capable of recognizing and monitoring the clinical performance. To this end, we have developed an autonomous and a fully automatic speech-based checklist system, capable of objectively identifying and validating anesthesia residents' actions in a simulation environment. Based on the analyzed results, our system is capable of recognizing most of the tasks in the checklist: F1 score of 0.77 for all of the tasks, and F1 score of 0.79 for the verbal tasks. Developing an audio-based system will improve the experience of a wide range of simulation platforms. Furthermore, in the future, this approach may be implemented in the operation room and emergency room. This could facilitate the development of automatic assistive technologies for these domains.
Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta in rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.
The exponential growth of the internet and social media in the past decade gave way to the increase in dissemination of false or misleading information. Since the 2016 US presidential election, the term fake news'' became increasingly popular and thi s phenomenon has received more attention. In the past years several fact-checking agencies were created, but due to the great number of daily posts on social media, manual checking is insufficient. Currently, there is a pressing need for automatic fake news detection tools, either to assist manual fact-checkers or to operate as standalone tools. There are several projects underway on this topic, but most of them focus on English. This research-in-progress paper discusses the employment of deep learning methods, and the development of a tool, for detecting false news in Portuguese. As a first step we shall compare well-established architectures that were tested in other languages and analyse their performance on our Portuguese data. Based on the preliminary results of these classifiers, we shall choose a deep learning model or combine several deep learning models which hold promise to enhance the performance of our fake news detection system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا