الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام الفرعية لورشة معالجة اللغات الطبيعية العربية السادسة (WANLP)؛تحليل السخرية وتحليل المعنويات.المنهجيات الخاصة بنا مدفوعة بفرضية أن التغريدات ذات الشعور السلبي والثغرات السلبية مع محتوى السخرية من غير المرجح أن يكون لها محتوى مسيء، وبالتالي، تؤدي إلى ضبط طراز التصنيف باستخدام كوربوس كبيرة من اللغة المسيئة، عملية التعلم للنموذج للكشف بشكل فعالالمعنويات ومحتويات السخرية.توضح النتائج فعالية نهجنا لمهمة الكشف عن السخرية على مهمة تحليل المعنويات.
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of the classifier. This paper presents the systems used in our participation to the two sub-tasks of the Sixth Arabic Natural Language Processing Workshop (WANLP); Sarcasm Detection and Sentiment Analysis. Our methodology is driven by the hypothesis that tweets with negative sentiment and tweets with sarcasm content are more likely to have offensive content, thus, fine-tuning the classification model using large corpus of offensive language, supports the learning process of the model to effectively detect sentiment and sarcasm contents. Results demonstrate the effectiveness of our approach for sarcasm detection task over sentiment analysis task.
References used
https://aclanthology.org/
Sentiment classification and sarcasm detection attract a lot of attention by the NLP research community. However, solving these two problems in Arabic and on the basis of social network data (i.e., Twitter) is still of lower interest. In this paper w
This paper presents our strategy to tackle the EACL WANLP-2021 Shared Task 2: Sarcasm and Sentiment Detection. One of the subtasks aims at developing a system that identifies whether a given Arabic tweet is sarcastic in nature or not, while the other
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep
Since their inception, transformer-based language models have led to impressive performance gains across multiple natural language processing tasks. For Arabic, the current state-of-the-art results on most datasets are achieved by the AraBERT languag
We describe our submitted system to the 2021 Shared Task on Sarcasm and Sentiment Detection in Arabic (Abu Farha et al., 2021). We tackled both subtasks, namely Sarcasm Detection (Subtask 1) and Sentiment Analysis (Subtask 2). We used state-of-the-ar