Do you want to publish a course? Click here

SkyQuery: An Aerial Drone Video Sensing Platform

103   0   0.0 ( 0 )
 Added by Favyen Bastani
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video-based sensing from aerial drones, especially small multirotor drones, can provide rich data for numerous applications, including traffic analysis (computing traffic flow volumes), precision agriculture (periodically evaluating plant health), and wildlife population management (estimating population sizes). However, aerial drone video sensing applications must handle a surprisingly wide range of tasks: video frames must be aligned so that we can equate coordinates of objects that appear in different frames, video data must be analyzed to extract application-specific insights, and drone routes must be computed that maximize the value of newly captured video. To address these challenges, we built SkyQuery, a novel aerial drone video sensing platform that provides an expressive, high-level programming language to make it straightforward for users to develop complex long-running sensing applications. SkyQuery combines novel methods for fast video frame alignment and detection of small objects in top-down aerial drone video to efficiently execute applications with diverse video analysis workflows and data distributions, thereby allowing application developers to focus on the unique qualities of their particular application rather than general video processing, data analysis, and drone routing tasks. We conduct diverse case studies using SkyQuery in parking monitoring, pedestrian activity mapping, and traffic hazard detection scenarios to demonstrate the generalizability and effectiveness of our system.



rate research

Read More

We consider the positioning problem of aerial drone systems for efficient three-dimensional (3-D) coverage. Our solution draws from molecular geometry, where forces among electron pairs surrounding a central atom arrange their positions. In this paper, we propose a 3-D clustering algorithm for autonomous positioning (VBCA) of aerial drone networks based on virtual forces. These virtual forces induce interactions among drones and structure the system topology. The advantages of our approach are that (1) virtual forces enable drones to self-organize the positioning process and (2) VBCA can be implemented entirely localized. Extensive simulations show that our virtual forces clustering approach produces scalable 3-D topologies exhibiting near-optimal volume coverage. VBCA triggers efficient topology rearrangement for an altering number of nodes, while providing network connectivity to the central drone. We also draw a comparison of volume coverage achieved by VBCA against existing approaches and find VBCA up to 40% more efficient.
161 - Weisen Shi , Junlng Li , Nan Cheng 2019
Drone base station (DBS) is a promising technique to extend wireless connections for uncovered users of terrestrial radio access networks (RAN). To improve user fairness and network performance, in this paper, we design 3D trajectories of multiple DBSs in the drone assisted radio access networks (DA-RAN) where DBSs fly over associated areas of interests (AoIs) and relay communications between the base station (BS) and users in AoIs. We formulate the multi-DBS 3D trajectory planning and scheduling as a mixed integer non-linear programming (MINLP) problem with the objective of minimizing the average DBS-to-user (D2U) pathloss. The 3D trajectory variations in both horizontal and vertical directions, as well as the state-of-the-art DBS-related channel models are considered in the formulation. To address the non-convexity and NP-hardness of the MINLP problem, we first decouple it into multiple integer linear programming (ILP) and quasi-convex sub-problems in which AoI association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DBS 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation and a search-based start slot scheduling are considered in the proposed algorithm to improve trajectory design performance and ensure inter-DBS distance constraint, respectively. Extensive simulations are conducted to investigate the impacts of DBS quantity, horizontal speed and initial trajectory on the trajectory planning results. Compared with the static DBS deployment, the proposed trajectory planning can achieve 10-15 dB reduction on average D2U pathloss, and reduce the D2U pathloss standard deviation by 68%, which indicate the improvements of network performance and user fairness.
52 - Babar Shahzaad 2020
We propose a novel resilient drone service composition framework for delivery in dynamic weather conditions. We use a skyline approach to select an optimal set of candidate drone services at the source node in a skyway network. Drone services are initially composed using a novel constraint-aware deterministic lookahead algorithm using the multi-armed bandit tree exploration. We propose a heuristic-based resilient service composition approach that adapts to runtime changes and periodically updates the composition to meet delivery expectations. Experimental results prove the efficiency of the proposed approach.
Future mobile communication networks require an Aerial Base Station (ABS) with fast mobility and long-term hovering capabilities. At present, unmanned aerial vehicles (UAV) or drones do not have long flight times and are mainly used for monitoring, surveillance, and image post-processing. On the other hand, the traditional airship is too large and not easy to take off and land. Therefore, we propose to develop an Artificial Intelligence (AI) Drone-Cruiser base station that can help 5G mobile communication systems and beyond quickly recover the network after a disaster and handle the instant communications by the flash crowd. The drone-cruiser base station can overcome the communications problem for three types of flash crowds, such as in stadiums, parades, and large plaza so that an appropriate number of aerial base stations can be accurately deployed to meet large and dynamic traffic demands. Artificial intelligence can solve these problems by analyzing the collected data, and then adjust the system parameters in the framework of Self-Organizing Network (SON) to achieve the goals of self-configuration, self-optimization, and self-healing. With the help of AI technologies, 5G networks can become more intelligent. This paper aims to provide a new type of service, On-Demand Aerial Base Station as a Service. This work needs to overcome the following five technical challenges: innovative design of drone-cruisers for the long-time hovering, crowd estimation and prediction, rapid 3D wireless channel learning and modeling, 3D placement of aerial base stations and the integration of WiFi front-haul and millimeter wave/WiGig back-haul networks.
The use of drone base stations to provide wireless connectivity for ground terminals is becoming a promising part of future technologies. The design of such aerial networks is however different compared to cellular 2D networks, as antennas from the drones are looking down, and the channel model becomes height-dependent. In this paper, we study the effect of antenna patterns and height-dependent shadowing. We consider a random network topology to capture the effect of dynamic changes of the flying base stations. First we characterize the aggregate interference imposed by the co-channel neighboring drones. Then we derive the link coverage probability between a ground user and its associated drone base station. The result is used to obtain the optimum system parameters in terms of drones antenna beamwidth, density and altitude. We also derive the average LoS probability of the associated drone and show that it is a good approximation and simplification of the coverage probability in low altitudes up to 500 m according to the required signal-to-interference-plus-noise ratio (SINR).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا