Do you want to publish a course? Click here

Security-Enhanced SC-FDMA Transmissions Using Temporal Artificial-Noise and Secret-Key Aided Schemes

67   0   0.0 ( 0 )
 Added by Ahmed El Shafie
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We investigate the physical layer security of uplink single-carrier frequency-division multiple-access (SC-FDMA) systems. Multiple users, Alices, send confidential messages to a common legitimate base-station, Bob, in the presence of an eavesdropper, Eve. To secure the legitimate transmissions, each user superimposes an artificial noise (AN) signal on the time-domain SC-FDMA data block. We reduce the computational and storage requirements at Bobs receiver by assuming simple per-subchannel detectors. We assume that Eve has global channel knowledge of all links in addition to high computational capabilities, where she adopts high-complexity detectors such as single-user maximum likelihood (ML), multiuser minimum-mean-square-error (MMSE), and multiuser ML. We analyze the correlation properties of the time-domain AN signal and illustrate how Eve can exploit them to reduce the AN effects. We prove that the number of useful AN streams that can degrade Eves signal-to-noise ratio (SNR) is dependent on the channel memories of Alices-Bob and Alices-Eve links. Furthermore, we enhance the system security for the case of partial Alices-Bob channel knowledge at Eve, where Eve only knows the precoding matrices of the data and AN signals instead of knowing the entire Alices-Bob channel matrices, and propose a hybrid scheme that integrates temporal AN with channel-based secret-key extraction.



rate research

Read More

We propose a new scheme to enhance the physical-layer security of wireless single-input single-output orthogonal-frequency division-multiplexing (OFDM) transmissions from an electric vehicle, Alice, to the aggregator, Bob, in the presence of an eavesdropper, Eve. To prevent information leakage to Eve, Alice exploits the wireless channel randomness to extract secret key symbols that are used to encrypt some data symbols which are then multiplexed in the frequency domain with the remaining unencrypted data symbols. To secure the unencrypted data symbols, Alice transmits an artificial-noise (AN) signal superimposed over her data signal. We propose a three-level optimization procedure to increase the average secrecy rate of this wiretap channel by optimizing the transmit power allocation between the encrypted data symbols, unencrypted data symbols and the AN symbols. Our numerical results show that the proposed scheme achieves considerable secrecy rate gains compared to the benchmark cases
This paper consider a new secure communication scene where a full-duplex transmitter (Alan) need to transmit confidential information to a half-duplex receiver (Bob), with a silent eavesdropper (Eve) that tries to eavesdrop the confidential information. For realizing secure communication between Alan and Bob, a novel two phases communication scheme is proposed: in Phase 1, Alan and Bob send artificial noises (AN) simultaneously, while in Phase 2, Alan superimposes the AN received in Phase 1 with its confidential signal and sends the mixed signalto Bob. Since the mixed AN could degrade the SINR (Signal to Interference and Noise Ratio) of Eve, but does not affect the SINR of Bob, a secrecy capacity can be achieved. We also derive the conditions that the secrecy capacity of the proposed scheme exists, and analyze the secrecy outage probability under Rayleigh fading channel. Numerical results show that the secrecy capacity is about two times higher than without AN, even though in the proposed scheme half of the time is used to transmit ANs, and the outage probability is about five times lower than that without AN.
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is measured by the Kolmogorov Smirnov (KS) distance between the actual cumulative density function (CDF) and the approximate CDF. The lognormal approximation is important because it allows tractable network performance analysis. Our results are more general than the existing works in the sense that we do not pose any requirement on (i) the shape and/or size of cell coverage areas, (ii) the uniformity of user equipment (UE) distribution, and (iii) the type of multi-path fading. Based on our results, we propose a new framework to directly and analytically investigate a complex network with practical deployment of multiple BSs placed at irregular locations, using a power lognormal approximation of the aggregate UL interference. The proposed network performance analysis is particularly useful for the 5th generation (5G) systems with general cell deployment and UE distribution.
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain condition. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
We consider the problem of efficient packet dissemination in wireless networks with point-to-multi-point wireless broadcast channels. We propose a dynamic policy, which achieves the broadcast capacity of the network. This policy is obtained by first transforming the original multi-hop network into a precedence-relaxed virtual single-hop network and then finding an optimal broadcast policy for the relaxed network. The resulting policy is shown to be throughput-optimal for the original wireless network using a sample-path argument. We also prove the NP-completeness of the finite-horizon broadcast problem, which is in contrast with the polynomial time solvability of the problem with point-to-point channels. Illustrative simulation results demonstrate the efficacy of the proposed broadcast policy in achieving the full broadcast capacity with low delay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا