Do you want to publish a course? Click here

Artificial-Noise-Aided Secure Channel with a Full-duplex Source

116   0   0.0 ( 0 )
 Added by Caihong Kai
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper consider a new secure communication scene where a full-duplex transmitter (Alan) need to transmit confidential information to a half-duplex receiver (Bob), with a silent eavesdropper (Eve) that tries to eavesdrop the confidential information. For realizing secure communication between Alan and Bob, a novel two phases communication scheme is proposed: in Phase 1, Alan and Bob send artificial noises (AN) simultaneously, while in Phase 2, Alan superimposes the AN received in Phase 1 with its confidential signal and sends the mixed signalto Bob. Since the mixed AN could degrade the SINR (Signal to Interference and Noise Ratio) of Eve, but does not affect the SINR of Bob, a secrecy capacity can be achieved. We also derive the conditions that the secrecy capacity of the proposed scheme exists, and analyze the secrecy outage probability under Rayleigh fading channel. Numerical results show that the secrecy capacity is about two times higher than without AN, even though in the proposed scheme half of the time is used to transmit ANs, and the outage probability is about five times lower than that without AN.



rate research

Read More

Security is a critical issue in full duplex (FD) communication systems due to the broadcast nature of wireless channels. In this paper, joint design of information and artificial noise beamforming vectors is proposed for the FD simultaneous wireless information and power transferring (FD-SWIPT) systems with loopback self-interference cancellation. To guarantee high security and energy harvesting performance of the FD-SWIPT system, the proposed design is formulated as a secrecy rate maximization problem under energy transfer rate constraints. Although the secrecy rate maximization problem is non-convex, we solve it via semidefinite relaxation and a two-dimensional search. We prove the optimality of our proposed algorithm and demonstrate its performance via simulations.
We investigate the physical layer security of uplink single-carrier frequency-division multiple-access (SC-FDMA) systems. Multiple users, Alices, send confidential messages to a common legitimate base-station, Bob, in the presence of an eavesdropper, Eve. To secure the legitimate transmissions, each user superimposes an artificial noise (AN) signal on the time-domain SC-FDMA data block. We reduce the computational and storage requirements at Bobs receiver by assuming simple per-subchannel detectors. We assume that Eve has global channel knowledge of all links in addition to high computational capabilities, where she adopts high-complexity detectors such as single-user maximum likelihood (ML), multiuser minimum-mean-square-error (MMSE), and multiuser ML. We analyze the correlation properties of the time-domain AN signal and illustrate how Eve can exploit them to reduce the AN effects. We prove that the number of useful AN streams that can degrade Eves signal-to-noise ratio (SNR) is dependent on the channel memories of Alices-Bob and Alices-Eve links. Furthermore, we enhance the system security for the case of partial Alices-Bob channel knowledge at Eve, where Eve only knows the precoding matrices of the data and AN signals instead of knowing the entire Alices-Bob channel matrices, and propose a hybrid scheme that integrates temporal AN with channel-based secret-key extraction.
In this paper, we propose a transceiver architecture for full-duplex (FD) eNodeB (eNB) and FD user equipment (UE) transceiver. For FD communication,.i.e., simultaneous in-band uplink and downlink operation, same subcarriers can be allocated to UE in both uplink and downlink. Hence, contrary to traditional LTE, we propose using single-carrier frequency division multiple accesses (SC-FDMA) for downlink along with the conventional method of using it for uplink. The use of multiple antennas at eNB and singular value decomposition (SVD) in the downlink allows multiple users (MU) to operate on the same set of ubcarriers. In the uplink, successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of UEs operating in the same set of subcarriers. A smart antenna approach is adopted which prevents interference, in downlink of a UE, from uplink signals of other UEs sharing same subcarriers. The approach includes using multiple antennas at UEs to form directed beams towards eNode and nulls towards other UEs. The proposed architecture results in significant improvement of the overall spectrum efficiency per cell of the cellular network.
Drone-mounted base stations (DBSs) are promising solutions to provide ubiquitous connections to users and support many applications in the fifth generation of mobile networks while full duplex communications has the potential to improve the spectrum efficiency. In this paper, we have investigated the backhaul-aware uplink communications in a full-duplex DBS-aided HetNet (BUD) problem with the objective to maximize the total throughput of the network, and this problem is decomposed into two sub-problems: the DBS Placement problem (including the vertical dimension and horizontal dimensions) and the joint UE association, power and bandwidth assignment (Joint-UPB) problem. Since the BUD problem is NP-hard, we propose approximation algorithms to solve the sub-problems and another, named the AA-BUD algorithm, to solve the BUD problem with guaranteed performance. The performance of the AA-BUD algorithm has been demonstrated via extensive simulations, and it is superior to two benchmark algorithms with up to 45.8% throughput improvement.
We investigate the physical-layer security of indoor hybrid parallel power-line/wireless orthogonal-frequency division-multiplexing (OFDM) communication systems. We propose an artificial-noise (AN) aided scheme to enhance the systems security in the presence of an eavesdropper by exploiting the decoupled nature of the power-line and wireless communication media. The proposed scheme does not require the instantaneous channel state information of the eavesdroppers links to be known at the legitimate nodes. In our proposed scheme, the legitimate transmitter (Alice) and the legitimate receiver (Bob) cooperate to secure the hybrid system where an AN signal is shared from Bob to Alice on the link with the lower channel-to-noise ratio (CNR) while the information stream in addition to a noisy-amplified version of the received AN signal is transmitted from Alice to Bob on the link with higher CNR at each OFDM sub-channel. In addition, we investigate the effect of the transmit power levels at both Alice and Bob and the power allocation ratio between the data and AN signals at Alice on the secure throughput. We investigate both single-link eavesdropping attacks, where only one link is exposed to eavesdropping attacks, and two-link eavesdropping attacks, where the two links are exposed to eavesdropping attacks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا