No Arabic abstract
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is measured by the Kolmogorov Smirnov (KS) distance between the actual cumulative density function (CDF) and the approximate CDF. The lognormal approximation is important because it allows tractable network performance analysis. Our results are more general than the existing works in the sense that we do not pose any requirement on (i) the shape and/or size of cell coverage areas, (ii) the uniformity of user equipment (UE) distribution, and (iii) the type of multi-path fading. Based on our results, we propose a new framework to directly and analytically investigate a complex network with practical deployment of multiple BSs placed at irregular locations, using a power lognormal approximation of the aggregate UL interference. The proposed network performance analysis is particularly useful for the 5th generation (5G) systems with general cell deployment and UE distribution.
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain condition. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
A fundamental problem arising in dense wireless networks is the high co-channel interference. Interference alignment (IA) was recently proposed as an effective way to combat interference in wireless networks. The concept of IA, though, is originated by the capacity study of interference channels and as such, its performance is mainly gauged under ideal assumptions, such as instantaneous and perfect channel state information (CSI) at all nodes, and homogeneous signal-to-noise ratio (SNR) users, i.e., each user has the same average SNR. Consequently, the performance of IA under realistic conditions has not been completely investigated yet. In this paper, we aim at filling this gap by providing a performance assessment of spatial IA in practical systems. Specifically, we derive a closed-form expression for the IA average sum-rate when CSI is acquired through training and users have heterogeneous SNR. A main insight from our analysis is that IA can indeed provide significant spectral efficiency gains over traditional approaches in a wide range of dense network scenarios. To demonstrate this, we consider the examples of linear, grid and random network topologies.
We propose and experimentally demonstrate a bandwidth allocation method based on the comparative advantage of spectral efficiency among users in a multi-tone small-cell radio access system with frequency-selective fading channels. The method allocates frequency resources by ranking the comparative advantage of the spectrum measured at the receivers ends. It improves the overall spectral efficiency of the access system with low implementation complexity and independently of power loading. In a two-user wireless transmission experiment, we observe up to 23.1% average capacity improvement by using the proposed method.
Cell association scheme determines which base station (BS) and mobile user (MU) should be associated with and also plays a significant role in determining the average data rate a MU can achieve in heterogeneous networks. However, the explosion of digital devices and the scarcity of spectra collectively force us to carefully re-design cell association scheme which was kind of taken for granted before. To address this, we develop a new cell association scheme in heterogeneous networks based on joint consideration of the signal-to-interference-plus-noise ratio (SINR) which a MU experiences and the traffic load of candidate BSs1. MUs and BSs in each tier are modeled as several independent Poisson point processes (PPPs) and all channels experience independently and identically distributed ( i.i.d.) Rayleigh fading. Data rate ratio and traffic load ratio distributions are derived to obtain the tier association probability and the average ergodic MU data rate. Through numerical results, We find that our proposed cell association scheme outperforms cell range expansion (CRE) association scheme. Moreover, results indicate that allocating small sized and high-density BSs will improve spectral efficiency if using our proposed cell association scheme in heterogeneous networks.
Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to augment their existing macro-cell deployments. This added flexibility complicates network management, in particular, service pricing and spectrum allocations across macro- and small-cells. Further, these decisions depend on the degree of competition among SPs. Restrictions on shared spectrum access imposed by regulators, such as low power constraints that lead to small-cell deployments, along with the investment cost needed to add small cells to an existing network, also impact strategic decisions and market efficiency. If the revenue generated by small-cells does not cover the investment cost, then there will be no deployment even if it increases social welfare. We study the implications of such spectrum constraints and investment costs on resource allocation and pricing decisions by competitive SPs, along with the associated social welfare. Our results show that while the optimal resource allocation taking constraints and investment into account can be uniquely determined, adding those features with strategic SPs can have a substantial effect on the equilibrium market structure.