Do you want to publish a course? Click here

Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions

85   0   0.0 ( 0 )
 Added by Abhishek Sinha
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We consider the problem of efficient packet dissemination in wireless networks with point-to-multi-point wireless broadcast channels. We propose a dynamic policy, which achieves the broadcast capacity of the network. This policy is obtained by first transforming the original multi-hop network into a precedence-relaxed virtual single-hop network and then finding an optimal broadcast policy for the relaxed network. The resulting policy is shown to be throughput-optimal for the original wireless network using a sample-path argument. We also prove the NP-completeness of the finite-horizon broadcast problem, which is in contrast with the polynomial time solvability of the problem with point-to-point channels. Illustrative simulation results demonstrate the efficacy of the proposed broadcast policy in achieving the full broadcast capacity with low delay.



rate research

Read More

We study and compare three coded schemes for single-server wireless broadcast of multiple description coded content to heterogeneous users. The users (sink nodes) demand different number of descriptions over links with different packet loss rates. The three coded schemes are based on the LT codes, growth codes, and randomized chunked codes. The schemes are compared on the basis of the total number of transmissions required to deliver the demands of all users, which we refer to as the server (source) delivery time. We design the degree distributions of LT codes by solving suitably defined linear optimization problems, and numerically characterize the achievable delivery time for different coding schemes. We find that including a systematic phase (uncoded transmission) is significantly beneficial for scenarios with low demands, and that coding is necessary for efficiently delivering high demands. Different demand and error rate scenarios may require very different coding schemes. Growth codes and chunked codes do not perform as well as optimized LT codes in the heterogeneous communication scenario.
Traffic load balancing and radio resource management is key to harness the dense and increasingly heterogeneous deployment of next generation $5$G wireless infrastructure. Strategies for aggregating user traffic from across multiple radio access technologies (RATs) and/or access points (APs) would be crucial in such heterogeneous networks (HetNets), but are not well investigated. In this paper, we develop a low complexity solution for maximizing an $alpha$-optimal network utility leveraging the multi-link aggregation (simultaneous connectivity to multiple RATs/APs) capability of users in the network. The network utility maximization formulation has maximization of sum rate ($alpha=0$), maximization of minimum rate ($alpha to infty$), and proportional fair ($alpha=1$) as its special cases. A closed form is also developed for the special case where a user aggregates traffic from at most two APs/RATs, and hence can be applied to practical scenarios like LTE-WLAN aggregation (LWA) and LTE dual-connectivity solutions. It is shown that the required objective may also be realized through a decentralized implementation requiring a series of message exchanges between the users and network. Using comprehensive system level simulations, it is shown that optimal leveraging of multi-link aggregation leads to substantial throughput gains over single RAT/AP selection techniques.
A fundamental problem arising in dense wireless networks is the high co-channel interference. Interference alignment (IA) was recently proposed as an effective way to combat interference in wireless networks. The concept of IA, though, is originated by the capacity study of interference channels and as such, its performance is mainly gauged under ideal assumptions, such as instantaneous and perfect channel state information (CSI) at all nodes, and homogeneous signal-to-noise ratio (SNR) users, i.e., each user has the same average SNR. Consequently, the performance of IA under realistic conditions has not been completely investigated yet. In this paper, we aim at filling this gap by providing a performance assessment of spatial IA in practical systems. Specifically, we derive a closed-form expression for the IA average sum-rate when CSI is acquired through training and users have heterogeneous SNR. A main insight from our analysis is that IA can indeed provide significant spectral efficiency gains over traditional approaches in a wide range of dense network scenarios. To demonstrate this, we consider the examples of linear, grid and random network topologies.
In an Ultra-dense network (UDN) where there are more base stations (BSs) than active users, it is possible that many BSs are instantaneously left idle. Thus, how to utilize these dormant BSs by means of cooperative transmission is an interesting question. In this paper, we investigate the performance of a UDN with two types of cooperation schemes: non-coherent joint transmission (JT) without channel state information (CSI) and coherent JT with full CSI knowledge. We consider a bounded dual-slope path loss model to describe UDN environments where a user has several BSs in the near-field and the rest in the far-field. Numerical results show that non-coherent JT cannot improve the user spectral efficiency (SE) due to the simultaneous increment in signal and interference powers. For coherent JT, the achievable SE gain depends on the range of near-field, the relative densities of BSs and users, and the CSI accuracy. Finally, we assess the energy efficiency (EE) of cooperation in UDN. Despite costing extra energy consumption, cooperation can still improve EE under certain conditions.
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal multiple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا