Do you want to publish a course? Click here

Discussion: Latent variable graphical model selection via convex optimization

143   0   0.0 ( 0 )
 Added by Zhao Ren
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Discussion of Latent variable graphical model selection via convex optimization by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].



rate research

Read More

We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which correspond to the observed variables. We give a graphical condition that is sufficient for the Jacobian matrix of the parametrization map to be full rank, which entails that the parametrization is generically finite-to-one, a fact that is sometimes also referred to as local identifiability. We also derive a graphical condition that is necessary for such identifiability. Finally, we give a condition under which generic parameter identifiability can be determined from identifiability of a model associated with a subgraph. The power of these criteria is assessed via an exhaustive algebraic computational study on models with 4, 5, and 6 observable variables.
We discuss a general approach to handling multiple hypotheses testing in the case when a particular hypothesis states that the vector of parameters identifying the distribution of observations belongs to a convex compact set associated with the hypothesis. With our approach, this problem reduces to testing the hypotheses pairwise. Our central result is a test for a pair of hypotheses of the outlined type which, under appropriate assumptions, is provably nearly optimal. The test is yielded by a solution to a convex programming problem, so that our construction admits computationally efficient implementation. We further demonstrate that our assumptions are satisfied in several important and interesting applications. Finally, we show how our approach can be applied to a rather general detection problem encompassing several classical statistical settings such as detection of abrupt signal changes, cusp detection and multi-sensor detection.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is small relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.
It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and show that for a wide class of prior distributions, including intrinsic priors, the corresponding Bayesian procedure for variable selection in normal regression is consistent in the entire class of normal linear models. We find that the asymptotics of the Bayes factors for intrinsic priors are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the Jeffreys--Lindley paradox refers to the well-known fact that a point null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity. This implies that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors are limits of proper prior distributions, and for finite sample sizes they have been proved to behave extremely well for variable selection in regression; a consequence of our results is that for intrinsic priors Lindleys paradox does not arise.
The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functional linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا