Do you want to publish a course? Click here

Variable selection in nonparametric additive models

246   0   0.0 ( 0 )
 Added by Jian Huang
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is small relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.



rate research

Read More

The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functional linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p-values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n. Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.
We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. An analysis of the theoretical properties of SpAM is given. We also study a greedy estimator that is a nonparametric version of forward stepwise regression. Empirical results on synthetic and real data are presented, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data.
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model based on the use of distance correlation proposed by cite{Szekely2007}. For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, ...) of each variable. The algorithm has shown quite promising results when applied to simulations and real data sets.
In this paper we discuss the estimation of a nonparametric component $f_1$ of a nonparametric additive model $Y=f_1(X_1) + ...+ f_q(X_q) + epsilon$. We allow the number $q$ of additive components to grow to infinity and we make sparsity assumptions about the number of nonzero additive components. We compare this estimation problem with that of estimating $f_1$ in the oracle model $Z= f_1(X_1) + epsilon$, for which the additive components $f_2,dots,f_q$ are known. We construct a two-step presmoothing-and-resmoothing estimator of $f_1$ and state finite-sample bounds for the difference between our estimator and some smoothing estimators $hat f_1^{text{(oracle)}}$ in the oracle model. In an asymptotic setting these bounds can be used to show asymptotic equivalence of our estimator and the oracle estimators; the paper thus shows that, asymptotically, under strong enough sparsity conditions, knowledge of $f_2,dots,f_q$ has no effect on estimation accuracy. Our first step is to estimate $f_1$ with an undersmoothed estimator based on near-orthogonal projections with a group Lasso bias correction. We then construct pseudo responses $hat Y$ by evaluating a debiased modification of our undersmoothed estimator of $f_1$ at the design points. In the second step the smoothing method of the oracle estimator $hat f_1^{text{(oracle)}}$ is applied to a nonparametric regression problem with responses $hat Y$ and covariates $X_1$. Our mathematical exposition centers primarily on establishing properties of the presmoothing estimator. We present simulation results demonstrating close-to-oracle performance of our estimator in practical applications.
Consider a Poisson point process with unknown support boundary curve $g$, which forms a prototype of an irregular statistical model. We address the problem of estimating non-linear functionals of the form $int Phi(g(x)),dx$. Following a nonparametric maximum-likelihood approach, we construct an estimator which is UMVU over Holder balls and achieves the (local) minimax rate of convergence. These results hold under weak assumptions on $Phi$ which are satisfied for $Phi(u)=|u|^p$, $pge 1$. As an application, we consider the problem of estimating the $L^p$-norm and derive the minimax separation rates in the corresponding nonparametric hypothesis testing problem. Structural differences to results for regular nonparametric models are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا