Do you want to publish a course? Click here

Frame semantic parsing is a semantic analysis task based on FrameNet which has received great attention recently. The task usually involves three subtasks sequentially: (1) target identification, (2) frame classification and (3) semantic role labelin g. The three subtasks are closely related while previous studies model them individually, which ignores their intern connections and meanwhile induces error propagation problem. In this work, we propose an end-to-end neural model to tackle the task jointly. Concretely, we exploit a graph-based method, regarding frame semantic parsing as a graph construction problem. All predicates and roles are treated as graph nodes, and their relations are taken as graph edges. Experiment results on two benchmark datasets of frame semantic parsing show that our method is highly competitive, resulting in better performance than pipeline models.
Natural language relies on a finite lexicon to express an unbounded set of emerging ideas. One result of this tension is the formation of new compositions, such that existing linguistic units can be combined with emerging items into novel expressions . We develop a framework that exploits the cognitive mechanisms of chaining and multimodal knowledge to predict emergent compositional expressions through time. We present the syntactic frame extension model (SFEM) that draws on the theory of chaining and knowledge from percept'', concept'', and language'' to infer how verbs extend their frames to form new compositions with existing and novel nouns. We evaluate SFEM rigorously on the 1) modalities of knowledge and 2) categorization models of chaining, in a syntactically parsed English corpus over the past 150 years. We show that multimodal SFEM predicts newly emerged verb syntax and arguments substantially better than competing models using purely linguistic or unimodal knowledge. We find support for an exemplar view of chaining as opposed to a prototype view and reveal how the joint approach of multimodal chaining may be fundamental to the creation of literal and figurative language uses including metaphor and metonymy.
While FrameNet is widely regarded as a rich resource of semantics in natural language processing, a major criticism concerns its lack of coverage and the relative paucity of its labeled data compared to other commonly used lexical resources such as P ropBank and VerbNet. This paper reports on a pilot study to address these gaps. We propose a data augmentation approach, which uses existing frame-specific annotation to automatically annotate other lexical units of the same frame which are unannotated. Our rule-based approach defines the notion of a **sister lexical unit** and generates frame-specific augmented data for training. We present experiments on frame-semantic role labeling which demonstrate the importance of this data augmentation: we obtain a large improvement to prior results on frame identification and argument identification for FrameNet, utilizing both full-text and lexicographic annotations under FrameNet. Our findings on data augmentation highlight the value of automatic resource creation for improved models in frame-semantic parsing.
This paper introduces Semantic Frame Forecast, a task that predicts the semantic frames that will occur in the next 10, 100, or even 1,000 sentences in a running story. Prior work focused on predicting the immediate future of a story, such as one to a few sentences ahead. However, when novelists write long stories, generating a few sentences is not enough to help them gain high-level insight to develop the follow-up story. In this paper, we formulate a long story as a sequence of story blocks,'' where each block contains a fixed number of sentences (e.g., 10, 100, or 200). This formulation allows us to predict the follow-up story arc beyond the scope of a few sentences. We represent a story block using the term frequencies (TF) of semantic frames in it, normalized by each frame's inverse document frequency (IDF). We conduct semantic frame forecast experiments on 4,794 books from the Bookcorpus and 7,962 scientific abstracts from CODA-19, with block sizes ranging from 5 to 1,000 sentences. The results show that automated models can forecast the follow-up story blocks better than the random, prior, and replay baselines, indicating the feasibility of the task. We also learn that the models using the frame representation as features outperform all the existing approaches when the block size is over 150 sentences. The human evaluation also shows that the proposed frame representation, when visualized as word clouds, is comprehensible, representative, and specific to humans.
FrameNet and the Multilingual FrameNet project have produced multilingual semantic annotations of parallel texts that yield extremely fine-grained typological insights. Moreover, frame semantic annotation of a wide cross-section of languages would pr ovide information on the limits of Frame Semantics (Fillmore 1982, Fillmore1985). Multilingual semantic annotation offers critical input for research on linguistic diversity and recurrent patterns in computational typology. Drawing on results from FrameNet annotation of parallel texts, this paper proposes frame semantic annotation as a new component to complement the state of the art in computational semantic typology.
Understanding how news media frame political issues is important due to its impact on public attitudes, yet hard to automate. Computational approaches have largely focused on classifying the frame of a full news article while framing signals are ofte n subtle and local. Furthermore, automatic news analysis is a sensitive domain, and existing classifiers lack transparency in their predictions. This paper addresses both issues with a novel semi-supervised model, which jointly learns to embed local information about the events and related actors in a news article through an auto-encoding framework, and to leverage this signal for document-level frame classification. Our experiments show that: our model outperforms previous models of frame prediction; we can further improve performance with unlabeled training data leveraging the semi-supervised nature of our model; and the learnt event and actor embeddings intuitively corroborate the document-level predictions, providing a nuanced and interpretable article frame representation.
Structural Frame system is considers as an earthquake resisting structural systems. On the other hand, many techniques were used to improve the resistance against lateral loads. where Steel Plate Shear Wall fixed within frame span is one of those techniques. This research aims to develop the Strip model of Partial Steel Plate Shear Walls with Reinforced-Concrete Frame with opening parallel to beams.
In this paper, we have suggested the STATCOM (STATic synchronous COMpensator) to connect PV-solar (or wind) frame to the power system for the Hassia industrial city which we chose as a case study. This frame will provide the city with the required power, improve the power quality and inject the redundant to the power system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا