Do you want to publish a course? Click here

This paper describes the model built for the SIGTYP 2021 Shared Task aimed at identifying 18 typologically different languages from speech recordings. Mel-frequency cepstral coefficients derived from audio files are transformed into spectrograms, whi ch are then fed into a ResNet-50-based CNN architecture. The final model achieved validation and test accuracies of 0.73 and 0.53, respectively.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR ) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
بناء نظام ذكي يقوم بالتعرف على الأصناف الموجودة في صورة وتوليد توصيف نصي لهذه الأغراض الموجودة في الصورة. استخدمنا الشبكات العصبونية الملتفة Convolutional Neural Networks للقيام بعملية استخلاص الأصناف الموجودة في الصورة، وأدخلنا هذه الأصناف إلى شبكة عصبونية تكرارية Recurrent Neural Network للقيام بعملية توليد التوصيف النصي.
relation extraction systems have made extensive use of features generated by linguistic analysis modules. Errors in these features lead to errors of relation detection and classification. In this work, we depart from these traditional approaches w ith complicated feature engineering by introducing a convolutional neural network for relation extraction that automatically learns features from sentences and minimizes the dependence on external toolkits and resources. Our model takes advantages of multiple window sizes for filters and pre-trained word embeddings as an initializer on a nonstatic architecture to improve the performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا