Do you want to publish a course? Click here

Transfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop , an efficient source valuation framework for quantifying the usefulness of the sources (e.g., ) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity.
Understanding how linguistic structure is encoded in contextualized embedding could help explain their impressive performance across NLP. Existing approaches for probing them usually call for training classifiers and use the accuracy, mutual informat ion, or complexity as a proxy for the representation's goodness. In this work, we argue that doing so can be unreliable because different representations may need different classifiers. We develop a heuristic, DirectProbe, that directly studies the geometry of a representation by building upon the notion of a version space for a task. Experiments with several linguistic tasks and contextualized embeddings show that, even without training classifiers, DirectProbe can shine lights on how an embedding space represents labels and also anticipate the classifier performance for the representation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا