Do you want to publish a course? Click here

Unsupervised Data Augmentation (UDA) is a semisupervised technique that applies a consistency loss to penalize differences between a model's predictions on (a) observed (unlabeled) examples; and (b) corresponding noised' examples produced via data au gmentation. While UDA has gained popularity for text classification, open questions linger over which design decisions are necessary and how to extend the method to sequence labeling tasks. In this paper, we re-examine UDA and demonstrate its efficacy on several sequential tasks. Our main contribution is an empirical study of UDA to establish which components of the algorithm confer benefits in NLP. Notably, although prior work has emphasized the use of clever augmentation techniques including back-translation, we find that enforcing consistency between predictions assigned to observed and randomly substituted words often yields comparable (or greater) benefits compared to these more complex perturbation models. Furthermore, we find that applying UDA's consistency loss affords meaningful gains without any unlabeled data at all, i.e., in a standard supervised setting. In short, UDA need not be unsupervised to realize much of its noted benefits, and does not require complex data augmentation to be effective.
Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above is sues may change the aspect and sentiment polarity. In this paper, we propose a semantics-preservation data augmentation approach by considering the importance of each word in a textual sequence according to the related aspects and sentiments. We then substitute the unimportant tokens with two replacement strategies without altering the aspect-level polarity. Our approach is evaluated on several publicly available sentiment analysis datasets and the real-world stock price/risk movement prediction scenarios. Experimental results show that our methodology achieves better performances in all datasets.
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-th e-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
This paper proposes AEDA (An Easier Data Augmentation) technique to help improve the performance on text classification tasks. AEDA includes only random insertion of punctuation marks into the original text. This is an easier technique to implement f or data augmentation than EDA method (Wei and Zou, 2019) with which we compare our results. In addition, it keeps the order of the words while changing their positions in the sentence leading to a better generalized performance. Furthermore, the deletion operation in EDA can cause loss of information which, in turn, misleads the network, whereas AEDA preserves all the input information. Following the baseline, we perform experiments on five different datasets for text classification. We show that using the AEDA-augmented data for training, the models show superior performance compared to using the EDA-augmented data in all five datasets. The source code will be made available for further study and reproduction of the results.
Abstractive conversation summarization has received growing attention while most current state-of-the-art summarization models heavily rely on human-annotated summaries. To reduce the dependence on labeled summaries, in this work, we present a simple yet effective set of Conversational Data Augmentation (CODA) methods for semi-supervised abstractive conversation summarization, such as random swapping/deletion to perturb the discourse relations inside conversations, dialogue-acts-guided insertion to interrupt the development of conversations, and conditional-generation-based substitution to substitute utterances with their paraphrases generated based on the conversation context. To further utilize unlabeled conversations, we combine CODA with two-stage noisy self-training where we first pre-train the summarization model on unlabeled conversations with pseudo summaries and then fine-tune it on labeled conversations. Experiments conducted on the recent conversation summarization datasets demonstrate the effectiveness of our methods over several state-of-the-art data augmentation baselines.
Despite its proven efficiency in other fields, data augmentation is less popular in the context of natural language processing (NLP) due to its complexity and limited results. A recent study (Longpre et al., 2020) showed for example that task-agnosti c data augmentations fail to consistently boost the performance of pretrained transformers even in low data regimes. In this paper, we investigate whether data-driven augmentation scheduling and the integration of a wider set of transformations can lead to improved performance where fixed and limited policies were unsuccessful. Our results suggest that, while this approach can help the training process in some settings, the improvements are unsubstantial. This negative result is meant to help researchers better understand the limitations of data augmentation for NLP.
Data augmentation and adversarial perturbation approaches have recently achieved promising results in solving the over-fitting problem in many natural language processing (NLP) tasks including sentiment classification. However, existing studies aimed to improve the generalization ability by augmenting the training data with synonymous examples or adding random noises to word embeddings, which cannot address the spurious association problem. In this work, we propose an end-to-end reinforcement learning framework, which jointly performs counterfactual data generation and dual sentiment classification. Our approach has three characteristics:1) the generator automatically generates massive and diverse antonymous sentences; 2) the discriminator contains a original-side sentiment predictor and an antonymous-side sentiment predictor, which jointly evaluate the quality of the generated sample and help the generator iteratively generate higher-quality antonymous samples; 3) the discriminator is directly used as the final sentiment classifier without the need to build an extra one. Extensive experiments show that our approach outperforms strong data augmentation baselines on several benchmark sentiment classification datasets. Further analysis confirms our approach's advantages in generating more diverse training samples and solving the spurious association problem in sentiment classification.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image s and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
Executing natural language instructions in a physically grounded domain requires a model that understands both spatial concepts such as left of'' and above'', and the compositional language used to identify landmarks and articulate instructions relat ive to them. In this paper, we study instruction understanding in the blocks world domain. Given an initial arrangement of blocks and a natural language instruction, the system executes the instruction by manipulating selected blocks. The highly compositional instructions are composed of atomic components and understanding these components is a necessary step to executing the instruction. We show that while end-to-end training (supervised only by the correct block location) fails to address the challenges of this task and performs poorly on instructions involving a single atomic component, knowledge-free auxiliary signals can be used to significantly improve performance by providing supervision for the instruction's components. Specifically, we generate signals that aim at helping the model gradually understand components of the compositional instructions, as well as those that help it better understand spatial concepts, and show their benefit to the overall task for two datasets and two state-of-the-art (SOTA) models, especially when the training data is limited---which is usual in such tasks.
We address the compositionality challenge presented by the SCAN benchmark. Using data augmentation and a modification of the standard seq2seq architecture with attention, we achieve SOTA results on all the relevant tasks from the benchmark, showing t he models can generalize to words used in unseen contexts. We propose an extension of the benchmark by a harder task, which cannot be solved by the proposed method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا