حقق نهج تكبير البيانات والضيقات الخصم مؤخرا نتائج واعدة في حل المشكلة المفرطة في العديد من مهام معالجة اللغة الطبيعية (NLP) بما في ذلك تصنيف المعنويات. ومع ذلك، فإن الدراسات الحالية التي تهدف إلى تحسين قدرة التعميم من خلال زيادة البيانات التدريبية مع أمثلة مرادفة أو إضافة ضوضاء عشوائية إلى Adgeddings Word، والتي لا يمكنها معالجة مشكلة الرابطة الزائفة. في هذا العمل، نقترح إطارا لتعزيز التعزيز نهاية إلى نهاية، والذي ينفذ بشكل مشترك توليد بيانات مضادة وتصنيف المعنويات المزدوجة. نهجنا لديه ثلاث خصائص: 1) يولد المولد تلقائيا جمل هائلة ومتنوعة؛ 2) يحتوي التمييز على مؤشر للمشاعر الجانبية الأصلية ومؤشر المعنويات الجانبية الناضجة، والذي يقوم بتقييم جودة العينة الناتجة بشكل مشترك ومساعدة المولد على توليد عينات مجفوف عالية الجودة أعلى جودة؛ 3) يتم استخدام التمييز مباشرة كقسم المعنويات النهائية دون الحاجة إلى بناء واحد إضافي. تظهر تجارب واسعة أن نهجنا يتفوق على خطوط خطوط خطوط تكبير البيانات قوية على العديد من مجموعات بيانات تصنيف المعفاة القياسية. يؤكد إجراء مزيد من التحليل بمزايا نهجنا في توليد عينات تدريب أكثر تنوعا وحل مشكلة الرابطة الزائفة في تصنيف المعنويات.
Data augmentation and adversarial perturbation approaches have recently achieved promising results in solving the over-fitting problem in many natural language processing (NLP) tasks including sentiment classification. However, existing studies aimed to improve the generalization ability by augmenting the training data with synonymous examples or adding random noises to word embeddings, which cannot address the spurious association problem. In this work, we propose an end-to-end reinforcement learning framework, which jointly performs counterfactual data generation and dual sentiment classification. Our approach has three characteristics:1) the generator automatically generates massive and diverse antonymous sentences; 2) the discriminator contains a original-side sentiment predictor and an antonymous-side sentiment predictor, which jointly evaluate the quality of the generated sample and help the generator iteratively generate higher-quality antonymous samples; 3) the discriminator is directly used as the final sentiment classifier without the need to build an extra one. Extensive experiments show that our approach outperforms strong data augmentation baselines on several benchmark sentiment classification datasets. Further analysis confirms our approach's advantages in generating more diverse training samples and solving the spurious association problem in sentiment classification.
References used
https://aclanthology.org/
We propose a data augmentation method for neural machine translation. It works by interpreting language models and phrasal alignment causally. Specifically, it creates augmented parallel translation corpora by generating (path-specific) counterfactua
This paper proposes AEDA (An Easier Data Augmentation) technique to help improve the performance on text classification tasks. AEDA includes only random insertion of punctuation marks into the original text. This is an easier technique to implement f
Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above is
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image
This paper describes the participation of the UoB-NLP team in the ProfNER-ST shared subtask 7a. The task was aimed at detecting the mention of professions in social media text. Our team experimented with two methods of improving the performance of pr