Do you want to publish a course? Click here

Cross-Modal Retrieval Augmentation for Multi-Modal Classification

تكبير استرجاع مشروط لتصنيف متعدد الوسائط

326   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.



References used
https://aclanthology.org/
rate research

Read More

Recent pretrained vision-language models have achieved impressive performance on cross-modal retrieval tasks in English. Their success, however, heavily depends on the availability of many annotated image-caption datasets for pretraining, where the t exts are not necessarily in English. Although we can utilize machine translation (MT) tools to translate non-English text to English, the performance still largely relies on MT's quality and may suffer from high latency problems in real-world applications. This paper proposes a new approach to learn cross-lingual cross-modal representations for matching images and their relevant captions in multiple languages. We seamlessly combine cross-lingual pretraining objectives and cross-modal pretraining objectives in a unified framework to learn image and text in a joint embedding space from available English image-caption data, monolingual and parallel corpus. We show that our approach achieves SOTA performance in retrieval tasks on two multimodal multilingual image caption benchmarks: Multi30k with German captions and MSCOCO with Japanese captions.
We propose a new task, Text2Mol, to retrieve molecules using natural language descriptions as queries. Natural language and molecules encode information in very different ways, which leads to the exciting but challenging problem of integrating these two very different modalities. Although some work has been done on text-based retrieval and structure-based retrieval, this new task requires integrating molecules and natural language more directly. Moreover, this can be viewed as an especially challenging cross-lingual retrieval problem by considering the molecules as a language with a very unique grammar. We construct a paired dataset of molecules and their corresponding text descriptions, which we use to learn an aligned common semantic embedding space for retrieval. We extend this to create a cross-modal attention-based model for explainability and reranking by interpreting the attentions as association rules. We also employ an ensemble approach to integrate our different architectures, which significantly improves results from 0.372 to 0.499 MRR. This new multimodal approach opens a new perspective on solving problems in chemistry literature understanding and molecular machine learning.
In primary school, children's books, as well as in modern language learning apps, multi-modal learning strategies like illustrations of terms and phrases are used to support reading comprehension. Also, several studies in educational psychology sugge st that integrating cross-modal information will improve reading comprehension. We claim that state-of- he-art multi-modal transformers, which could be used in a language learner context to improve human reading, will perform poorly because of the short and relatively simple textual data those models are trained with. To prove our hypotheses, we collected a new multi-modal image-retrieval dataset based on data from Wikipedia. In an in-depth data analysis, we highlight the differences between our dataset and other popular datasets. Additionally, we evaluate several state-of-the-art multi-modal transformers on text-image retrieval on our dataset and analyze their meager results, which verify our claims.
Open-domain extractive question answering works well on textual data by first retrieving candidate texts and then extracting the answer from those candidates. However, some questions cannot be answered by text alone but require information stored in tables. In this paper, we present an approach for retrieving both texts and tables relevant to a question by jointly encoding texts, tables and questions into a single vector space. To this end, we create a new multi-modal dataset based on text and table datasets from related work and compare the retrieval performance of different encoding schemata. We find that dense vector embeddings of transformer models outperform sparse embeddings on four out of six evaluation datasets. Comparing different dense embedding models, tri-encoders with one encoder for each question, text and table increase retrieval performance compared to bi-encoders with one encoder for the question and one for both text and tables. We release the newly created multi-modal dataset to the community so that it can be used for training and evaluation.
Recent work in open-domain conversational agents has demonstrated that significant improvements in humanness and user preference can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 202 0). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of getting humans to engage in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to human preference.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا