Do you want to publish a course? Click here

We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using t he permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scoresaround 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.
Concept normalization of clinical texts to standard medical classifications and ontologies is a task with high importance for healthcare and medical research. We attempt to solve this problem through automatic SNOMED CT encoding, where SNOMED CT is o ne of the most widely used and comprehensive clinical term ontologies. Applying basic Deep Learning models, however, leads to undesirable results due to the unbalanced nature of the data and the extreme number of classes. We propose a classification procedure that features a multiple-step workflow consisting of label clustering, multi-cluster classification, and clusters-to-labels mapping. For multi-cluster classification, BioBERT is fine-tuned over our custom dataset. The clusters-to-labels mapping is carried out by a one-vs-all classifier (SVC) applied to every single cluster. We also present the steps for automatic dataset generation of textual descriptions annotated with SNOMED CT codes based on public data and linked open data. In order to cope with the problem that our dataset is highly unbalanced, some data augmentation methods are applied. The results from the conducted experiments show high accuracy and reliability of our approach for prediction of SNOMED CT codes relevant to a clinical text.
The task of automatic diagnosis encoding into standard medical classifications and ontologies, is of great importance in medicine - both to support the daily tasks of physicians in the preparation and reporting of clinical documentation, and for auto matic processing of clinical reports. In this paper we investigate the application and performance of different deep learning transformers for automatic encoding in ICD-10 of clinical texts in Bulgarian. The comparative analysis attempts to find which approach is more efficient to be used for fine-tuning of pretrained BERT family transformer to deal with a specific domain terminology on a rare language as Bulgarian. On the one side are used SlavicBERT and MultiligualBERT, that are pretrained for common vocabulary in Bulgarian, but lack medical terminology. On the other hand in the analysis are used BioBERT, ClinicalBERT, SapBERT, BlueBERT, that are pretrained for medical terminology in English, but lack training for language models in Bulgarian, and more over for vocabulary in Cyrillic. In our research study all BERT models are fine-tuned with additional medical texts in Bulgarian and then applied to the classification task for encoding medical diagnoses in Bulgarian into ICD-10 codes. Big corpora of diagnosis in Bulgarian annotated with ICD-10 codes is used for the classification task. Such an analysis gives a good idea of which of the models would be suitable for tasks of a similar type and domain. The experiments and evaluation results show that both approaches have comparable accuracy.
Modelling and understanding dialogues in a conversation depends on identifying the user intent from the given text. Unknown or new intent detection is a critical task, as in a realistic scenario a user intent may frequently change over time and diver t even to an intent previously not encountered. This task of separating the unknown intent samples from known intents one is challenging as the unknown user intent can range from intents similar to the predefined intents to something completely different. Prior research on intent discovery often consider it as a classification task where an unknown intent can belong to a predefined set of known intent classes. In this paper we tackle the problem of detecting a completely unknown intent without any prior hints about the kind of classes belonging to unknown intents. We propose an effective post-processing method using multi-objective optimization to tune an existing neural network based intent classifier and make it capable of detecting unknown intents. We perform experiments using existing state-of-the-art intent classifiers and use our method on top of them for unknown intent detection. Our experiments across different domains and real-world datasets show that our method yields significant improvements compared with the state-of-the-art methods for unknown intent detection.
Lexical Complexity Prediction (LCP) involves assigning a difficulty score to a particular word or expression, in a text intended for a target audience. In this paper, we introduce a new deep learning-based system for this challenging task. The propos ed system consists of a deep learning model, based on pre-trained transformer encoder, for word and Multi-Word Expression (MWE) complexity prediction. First, on top of the encoder's contextualized word embedding, our model employs an attention layer on the input context and the complex word or MWE. Then, the attention output is concatenated with the pooled output of the encoder and passed to a regression module. We investigate both single-task and joint training on both Sub-Tasks data using multiple pre-trained transformer-based encoders. The obtained results are very promising and show the effectiveness of fine-tuning pre-trained transformers for LCP task.
Logical Observation Identifiers Names and Codes (LOINC) is a standard set of codes that enable clinicians to communicate about medical tests. Laboratories depend on LOINC to identify what tests a doctor orders for a patient. However, clinicians often use site specific, custom codes in their medical records systems that can include shorthand, spelling mistakes, and invented acronyms. Software solutions must map from these custom codes to the LOINC standard to support data interoperability. A key challenge is that LOINC is comprised of six elements. Mapping requires not only extracting those elements, but also combining them according to LOINC logic. We found that character-based deep learning excels at extracting LOINC elements while logic based methods are more effective for combining those elements into complete LOINC values. In this paper, we present an ensemble of machine learning and logic that is currently used in several medical facilities to map from
Deep Learning-based NLP systems can be sensitive to unseen tokens and hard to learn with high-dimensional inputs, which critically hinder learning generalization. We introduce an approach by grouping input words based on their semantic diversity to s implify input language representation with low ambiguity. Since the semantically diverse words reside in different contexts, we are able to substitute words with their groups and still distinguish word meanings relying on their contexts. We design several algorithms that compute diverse groupings based on random sampling, geometric distances, and entropy maximization, and we prove formal guarantees for the entropy-based algorithms. Experimental results show that our methods generalize NLP models and demonstrate enhanced accuracy on POS tagging and LM tasks and significant improvements on medium-scale machine translation tasks, up to +6.5 BLEU points. Our source code is available at https://github.com/abdulrafae/dg.
Recent Deep Learning (DL) summarization models greatly outperform traditional summarization methodologies, generating high-quality summaries. Despite their success, there are still important open issues, such as the limited engagement and trust of us ers in the whole process. In order to overcome these issues, we reconsider the task of summarization from a human-centered perspective. We propose to integrate a user interface with an underlying DL model, instead of tackling summarization as an isolated task from the end user. We present a novel system, where the user can actively participate in the whole summarization process. We also enable the user to gather insights into the causative factors that drive the model's behavior, exploiting the self-attention mechanism. We focus on the financial domain, in order to demonstrate the efficiency of generic DL models for domain-specific applications. Our work takes a first step towards a model-interface co-design approach, where DL models evolve along user needs, paving the way towards human-computer text summarization interfaces.
بناء نظام ذكي يقوم بالتعرف على الأصناف الموجودة في صورة وتوليد توصيف نصي لهذه الأغراض الموجودة في الصورة. استخدمنا الشبكات العصبونية الملتفة Convolutional Neural Networks للقيام بعملية استخلاص الأصناف الموجودة في الصورة، وأدخلنا هذه الأصناف إلى شبكة عصبونية تكرارية Recurrent Neural Network للقيام بعملية توليد التوصيف النصي.
Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently lead to a large influx of contributions in this direction. This article presents a survey on adversarial attacks on deep learning in Computer Vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا