يعد تطبيع المفهوم للنصوص السريرية للتصنيفات الطبية القياسية والاتجاهات مهمة ذات أهمية عالية للبحث الطبي للرعاية الصحية. نحاول حل هذه المشكلة من خلال ترميز CT التلقائي CT، حيث يعد CT Snomed CT أحد أونولوجيات المصطلحات السريرية الأكثر استخداما وشاملة على نطاق واسع. ومع ذلك، فإن تطبيق نماذج التعلم العميق الأساسية يؤدي إلى نتائج غير مرغوب فيها بسبب الطبيعة غير المتوازنة للبيانات والعدد المتطرف من الفصول الدراسية. نقترح إجراء التصنيف الذي يحتوي على سير عمل متعدد الخطوات يتكون من تجميع الملصقات، والتصنيف متعدد الكتلة، ورسم الخرائط عن المجموعات إلى الملصقات. بالنسبة للتصنيف متعدد المجموعات، BioBert يتم ضبطه بشكل جيد على مجموعة بياناتنا المخصصة. يتم إجراء تعيين مجموعات إلى التسميات من قبل A One-VS-All Mederifier (SVC) المطبق على كل كتلة واحدة. نقدم أيضا خطوات لتوليد البيانات التلقائي من الأوصاف النصية المشروحة مع رموز CT Conomed بناء على البيانات العامة والبيانات المفتوحة المرتبطة. من أجل التعامل مع المشكلة أن DataSet لدينا غير متوازنة للغاية، يتم تطبيق بعض طرق تكبير البيانات. تظهر النتائج من التجارب التي أجريت دقة عالية وموثوقية نهجنا للتنبؤ برموز CT Conomed ذات الصلة بنص سريري.
Concept normalization of clinical texts to standard medical classifications and ontologies is a task with high importance for healthcare and medical research. We attempt to solve this problem through automatic SNOMED CT encoding, where SNOMED CT is one of the most widely used and comprehensive clinical term ontologies. Applying basic Deep Learning models, however, leads to undesirable results due to the unbalanced nature of the data and the extreme number of classes. We propose a classification procedure that features a multiple-step workflow consisting of label clustering, multi-cluster classification, and clusters-to-labels mapping. For multi-cluster classification, BioBERT is fine-tuned over our custom dataset. The clusters-to-labels mapping is carried out by a one-vs-all classifier (SVC) applied to every single cluster. We also present the steps for automatic dataset generation of textual descriptions annotated with SNOMED CT codes based on public data and linked open data. In order to cope with the problem that our dataset is highly unbalanced, some data augmentation methods are applied. The results from the conducted experiments show high accuracy and reliability of our approach for prediction of SNOMED CT codes relevant to a clinical text.
References used
https://aclanthology.org/
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using t
Hierarchical multi-label text classification (HMTC) deals with the challenging task where an instance can be assigned to multiple hierarchically structured categories at the same time. The majority of prior studies either focus on reducing the HMTC t
Due to efficient end-to-end training and fluency in generated texts, several encoder-decoder framework-based models are recently proposed for data-to-text generations. Appropriate encoding of input data is a crucial part of such encoder-decoder model
Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate
We use Hypergraph Attention Networks (HyperGAT) to recognize multiple labels of Chinese humor texts. We firstly represent a joke as a hypergraph. The sequential hyperedge and semantic hyperedge structures are used to construct hyperedges. Then, atten