Do you want to publish a course? Click here

In this research, We introduce two probabilistic mechanisms to certificate parallel applications on distribute architecture supposing that there are no oracles on which we depend on certification, in addition to introducing cost model of two mecha nisms and compare them. In this research, we are interested in parallel applications, which are represented by data-flow graph that is built dynamically during the execution and which are executed in a wide distributed heterogeneous and dynamic environment and these applications use the principle of work stealing to distribute the tasks among the processors.
The study is researching the fault tolerance in the large distributed environments such as grid computing and clusters of computers in order to find the most effective ways to deal with the errors associated with the crash one of the devices in th e environment or network disconnection to ensure the continuity of the application in the presence of the faults.In this paper we study a model of the distributed environment and the parallel applications within it. Then we provide a checkpoint mechanism that will enable us to ensure continuity of the work used by a virtual representation of the application (macro dataflow) and suitable for the applications which uses work stealing algorithm to distribute the tasks which are implemented in heterogeneous and dynamic environment. This mechanism will add a simple cost to the cost of parallel execution as a result of keeping part of the work during fault-free execution. The study also provides a mathematical model to calculate the time complexity i.e. the cost of this proposed mechanism.
We introduce an auto adaptive strategy enables to write a parallel algorithm adapts to the number of available resources at allocated parallel environment to execute the parallel program. The parallel applications we are studying which are represe nted by data-flow graph which built dynamically during the execution. The new suggested strategy is based on coupling of a sequential algorithm and a parallel one and relies on the principle of work stealing in the tasks scheduling. We offer a study of the complexity of the adaptive algorithm and analyze its performance on processors and compare it with a performance of a classic parallel algorithm.
The work aims to make benefit from existence multi-CPU and multi-GPU, exploiting the calculation processes which do multi-GPU, which aims to form mechanism to scheduling a directed acyclic graph(DAG), it aims to reduce communication between resources and inter linked task scheduling in the best form.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا