Do you want to publish a course? Click here

Auto Adaptive Strategy for Parallel Applications

استراتيجية ذاتية التكيف للتطبيقات المتوازية

1458   0   44   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

We introduce an auto adaptive strategy enables to write a parallel algorithm adapts to the number of available resources at allocated parallel environment to execute the parallel program. The parallel applications we are studying which are represented by data-flow graph which built dynamically during the execution. The new suggested strategy is based on coupling of a sequential algorithm and a parallel one and relies on the principle of work stealing in the tasks scheduling. We offer a study of the complexity of the adaptive algorithm and analyze its performance on processors and compare it with a performance of a classic parallel algorithm.


Artificial intelligence review:
Research summary
يقدم هذا البحث استراتيجية ذاتية التكيف لكتابة خوارزمية متوازية تتكيف مع عدد الموارد المتاحة في بيئة تفرعية مخصصة. تركز الدراسة على التطبيقات المتوازية الممثلة بمخطط تدفق البيانات المبني ديناميكياً خلال التنفيذ. تعتمد الاستراتيجية المقترحة على مزاوجة بين خوارزمية تسلسلية وأخرى متوازية، مستندة إلى مبدأ سرقة العمل في جدولة المهام. تم تحليل تعقيد الخوارزمية المتكيفة وأدائها على عدد من المعالجات، ومقارنتها مع خوارزمية تفرعية تقليدية. الهدف من البحث هو تحسين أداء البرامج المتوازية وتقليل زمن تنفيذها باستخدام طريقة ذاتية التكيف تستغل الموارد المتاحة بكفاءة. تم تقديم نموذج رياضي لحساب زمن تنفيذ الخوارزمية المقترحة، وتم تطبيق الاستراتيجية على مثال حساب العاملي لعدد معطى، حيث أظهرت النتائج أن زمن تنفيذ الخوارزمية المقترحة أصغر مقارنة مع الخوارزمية التفرعية التقليدية والخوارزمية التسلسلية.
Critical review
دراسة نقدية: البحث يقدم فكرة مبتكرة في مجال البرمجة المتوازية، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم تقديم تجارب عملية كافية لتأكيد فعالية الاستراتيجية المقترحة في بيئات متنوعة. ثانياً، التركيز كان على مثال واحد فقط (حساب العاملي)، مما يجعل من الصعب تعميم النتائج على تطبيقات أخرى. ثالثاً، لم يتم مناقشة تأثيرات العوامل الخارجية مثل تباين سرعة المعالجات أو مشاكل الاتصال بين المعالجات. أخيراً، كان من المفيد تقديم مقارنة مع استراتيجيات تكييف أخرى موجودة في الأدبيات لتوضيح مدى تفوق الاستراتيجية المقترحة.
Questions related to the research
  1. ما هي الفكرة الأساسية للاستراتيجية المقترحة في البحث؟

    الفكرة الأساسية هي تقديم استراتيجية ذاتية التكيف لكتابة خوارزمية متوازية تتكيف مع عدد الموارد المتاحة في بيئة تفرعية، باستخدام مبدأ سرقة العمل في جدولة المهام.

  2. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تحسين أداء البرامج المتوازية وتقليل زمن تنفيذها باستخدام طريقة ذاتية التكيف تستغل الموارد المتاحة بكفاءة.

  3. ما هي النقاط التي يمكن تحسينها في البحث؟

    يمكن تحسين البحث من خلال تقديم تجارب عملية كافية، دراسة تأثيرات العوامل الخارجية، وتقديم مقارنة مع استراتيجيات تكييف أخرى.

  4. ما هي النتائج التي توصل إليها البحث عند تطبيق الاستراتيجية على مثال حساب العاملي؟

    النتائج أظهرت أن زمن تنفيذ الخوارزمية المقترحة أصغر مقارنة مع الخوارزمية التفرعية التقليدية والخوارزمية التسلسلية.


References used
BENDER MA, RABIN MO, 2002, Online scheduling of parallel programs on heterogeneous systems with applications to cilk, Theory Comput Syst. Vol 35.3, pp 289-304
BERNARD J, TRAORE D, ROCH JL, 2006, On-line adaptive parallel prefix computation, Euro-Par, vol 4128, pp 841-850
GALILEE F, CAVALHEIRO G, DOREILLE M, ROCH JL, 1998, Athapascan-1: On-Line Building Data Flow Graph in a Parallel Language, International Conference on Parallel Architectures and Compilation Techniques, PACT'98, pp 88–95
rate research

Read More

The work aims to make benefit from existence multi-CPU and multi-GPU, exploiting the calculation processes which do multi-GPU, which aims to form mechanism to scheduling a directed acyclic graph(DAG), it aims to reduce communication between resources and inter linked task scheduling in the best form.
In this paper, we introduce a continuous mathematical model to optimize the compromise between the overhead of fault tolerance mechanism and the faults impacts in the environment of execution. The fault tolerance mechanism considered in this rese arch is a coordinated checkpoint/recovery mechanism and the study based on stochastic model of different performance critics of parallel application on parallel and distributed environment.
In this research, We introduce two probabilistic mechanisms to certificate parallel applications on distribute architecture supposing that there are no oracles on which we depend on certification, in addition to introducing cost model of two mecha nisms and compare them. In this research, we are interested in parallel applications, which are represented by data-flow graph that is built dynamically during the execution and which are executed in a wide distributed heterogeneous and dynamic environment and these applications use the principle of work stealing to distribute the tasks among the processors.
In this paper we present a study on the time cost added to the grid computing as a result of the use of a coordinated checkpoint / recovery fault tolerance protocol, we aim to find a mathematical model which determined the suitable time to save t he checkpoints for application, to achieve a minimum finish time of parallel application in grid computing with faults and fault tolerance protocols, we have find this model by serial modeling to the goal errors, execution environment and the chosen fault tolerance protocol all that by Kolmogorov differential equations.
We propose a novel framework to train models to classify acceptability of responses generated by natural language generation (NLG) models, improving upon existing sentence transformation and model-based approaches. An NLG response is considered accep table if it is both semantically correct and grammatical. We don't make use of any human references making the classifiers suitable for runtime deployment. Training data for the classifiers is obtained using a 2-stage approach of first generating synthetic data using a combination of existing and new model-based approaches followed by a novel validation framework to filter and sort the synthetic data into acceptable and unacceptable classes. Our 2-stage approach adapts to a wide range of data representations and does not require additional data beyond what the NLG models are trained on. It is also independent of the underlying NLG model architecture, and is able to generate more realistic samples close to the distribution of the NLG model-generated responses. We present results on 5 datasets (WebNLG, Cleaned E2E, ViGGO, Alarm, and Weather) with varying data representations. We compare our framework with existing techniques that involve synthetic data generation using simple sentence transformations and/or model-based techniques, and show that building acceptability classifiers using data that resembles the generation model outputs followed by a validation framework outperforms the existing techniques, achieving state-of-the-art results. We also show that our techniques can be used in few-shot settings using self-training.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا