Do you want to publish a course? Click here

Coreference resolution is key to many natural language processing tasks and yet has been relatively unexplored in Sign Language Processing. In signed languages, space is primarily used to establish reference. Solving coreference resolution for signed languages would not only enable higher-level Sign Language Processing systems, but also enhance our understanding of language in different modalities and of situated references, which are key problems in studying grounded language. In this paper, we: (1) introduce Signed Coreference Resolution (SCR), a new challenge for coreference modeling and Sign Language Processing; (2) collect an annotated corpus of German Sign Language with gold labels for coreference together with an annotation software for the task; (3) explore features of hand gesture, iconicity, and spatial situated properties and move forward to propose a set of linguistically informed heuristics and unsupervised models for the task; (4) put forward several proposals about ways to address the complexities of this challenge effectively.
In this paper we present a prototypical implementation of a pipeline that allows the automatic generation of a German Sign Language avatar from 2D video material. The presentation is accompanied by the source code. We record human pose movements duri ng signing with computer vision models. The joint coordinates of hands and arms are imported as landmarks to control the skeleton of our avatar. From the anatomically independent landmarks, we create another skeleton based on the avatar's skeletal bone architecture to calculate the bone rotation data. This data is then used to control our human 3D avatar. The avatar is displayed on AR glasses and can be placed virtually in the room, in a way that it can be perceived simultaneously to the verbal speaker. In further work it is aimed to be enhanced with speech recognition and machine translation methods for serving as a sign language interpreter. The prototype has been shown to people of the deaf and hard-of-hearing community for assessing its comprehensibility. Problems emerged with the transferred hand rotations, hand gestures were hard to recognize on the avatar due to deformations like twisted finger meshes.
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and then translates glosses into a spoken languages. This work focuses on the second-stage gloss translation component, which is challenging due to the scarcity o f publicly available parallel data. We approach gloss translation as a low-resource machine translation task and investigate two popular methods for improving translation quality: hyperparameter search and backtranslation. We discuss the potentials and pitfalls of these methods based on experiments on the RWTH-PHOENIX-Weather 2014T dataset.
Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss to-text translation, where a gloss is a sequence of transcribed spoken-language words in the order in which they are signed. We focus here on gloss-to-text translation, which we treat as a low-resource neural machine translation (NMT) problem. However, unlike traditional low resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lexical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical overlap and handle syntactic divergence by proposing two rule-based heuristics that generate pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on this synthetic data, we improve translation from American Sign Language (ASL) to English and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.
This paper identifies some common and specific pitfalls in the development of sign language technologies targeted at deaf communities, with a specific focus on signing avatars. It makes the call to urgently interrogate some of the ideologies behind t hose technologies, including issues of ethical and responsible development. The paper addresses four separate and interlinked issues: ideologies about deaf people and mediated communication, bias in data sets and learning, user feedback, and applications of the technologies. The paper ends with several take away points for both technology developers and deaf NGOs. Technology developers should give more consideration to diversifying their team and working interdisciplinary, and be mindful of the biases that inevitably creep into data sets. There should also be a consideration of the technologies' end users. Sign language interpreters are not the end users nor should they be seen as the benchmark for language use. Technology developers and deaf NGOs can engage in a dialogue about how to prioritize application domains and prioritize within application domains. Finally, deaf NGOs policy statements will need to take a longer view, and use avatars to think of a significantly better system compared to what sign language interpreting services can provide.
Communication between healthcare professionals and deaf patients is challenging, and the current COVID-19 pandemic makes this issue even more acute. Sign language interpreters can often not enter hospitals and face masks make lipreading impossible. T o address this urgent problem, we developed a system which allows healthcare professionals to translate sentences that are frequently used in the diagnosis and treatment of COVID-19 into Sign Language of the Netherlands (NGT). Translations are displayed by means of videos and avatar animations. The architecture of the system is such that it could be extended to other applications and other sign languages in a relatively straightforward way.
We report on the development of ASLNet, a wordnet for American Sign Language (ASL). ASLNet V1.0 is currently under construction by mapping easy-to-translate ASL lexical nouns to Princeton WordNet synsets. We describe our data model and mapping approa ch, which can be extended to any sign language. Analysis of the 390 synsets processed to date indicates the success of our procedure yet also highlights the need to supplement our mapping with the merge'' method. We outline our plans for upcoming work to remedy this, which include use of ASL free-association data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا