دقة Aquerence هي مفتاح العديد من مهام معالجة اللغة الطبيعية، لكنها غير مستكشفة نسبيا في معالجة لغة الإشارة. في لغات موقعة، تستخدم الفضاء في المقام الأول لتحديد المرجع. لن يقوم حل دقة Aquerence للغات الموقعة فقط بتمكين أنظمة معالجة لغة الإشارة عالية المستوى، بل تقوم أيضا بتعزيز فهمنا للغة في طرائق مختلفة والمراجع الموجودة، وهي مشاكل رئيسية في دراسة اللغة المحددة. في هذه الورقة، نحن: (1) تقديم دقة COMARCALE الموقعة (SCR)، تحديا جديدا لنمذجة Aquerence وعلاج لغة الإشارة؛ (2) جمع وجعة مشروحة من لغة الإشارة الألمانية مع ملصقات ذهبية ل Taquerence جنبا إلى جنب مع برنامج شرح للمهمة؛ (3) استكشاف ميزات لفتة اليد، الإيقاعي، والعقارات المكانية الموجودة والمضي قدما لاقتراح مجموعة من الاستدلال المباشرة المباشرة ونماذج غير مخالفة للمهمة؛ (4) طرح عدة مقترحات حول طرق معالجة تعقيدات هذا التحدي بفعالية.
Coreference resolution is key to many natural language processing tasks and yet has been relatively unexplored in Sign Language Processing. In signed languages, space is primarily used to establish reference. Solving coreference resolution for signed languages would not only enable higher-level Sign Language Processing systems, but also enhance our understanding of language in different modalities and of situated references, which are key problems in studying grounded language. In this paper, we: (1) introduce Signed Coreference Resolution (SCR), a new challenge for coreference modeling and Sign Language Processing; (2) collect an annotated corpus of German Sign Language with gold labels for coreference together with an annotation software for the task; (3) explore features of hand gesture, iconicity, and spatial situated properties and move forward to propose a set of linguistically informed heuristics and unsupervised models for the task; (4) put forward several proposals about ways to address the complexities of this challenge effectively.
References used
https://aclanthology.org/
Despite recent promising results on the application of span-based models for event reference interpretation, there is a lack of understanding of what has been improved. We present an empirical analysis of a state-of-the-art span-based event reference systems with the goal of providing the general NLP audience with a better understanding of the state of the art and reference researchers with directions for future research.
Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new mod
In this paper, we present coreference resolution experiments with a newly created multilingual corpus CorefUD (Nedoluzhko et al.,2021). We focus on the following languages: Czech, Russian, Polish, German, Spanish, and Catalan. In addition to monoling
We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology princip
We propose a neural event coreference model in which event coreference is jointly trained with five tasks: trigger detection, entity coreference, anaphoricity determination, realis detection, and argument extraction. To guide the learning of this com