Do you want to publish a course? Click here

Approaching Sign Language Gloss Translation as a Low-Resource Machine Translation Task

اقترب ترجمة لغة الإشارة لغة اللغات باعتبارها مهمة ترجمة ذات صالة منخفضة الموارد

218   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

A cascaded Sign Language Translation system first maps sign videos to gloss annotations and then translates glosses into a spoken languages. This work focuses on the second-stage gloss translation component, which is challenging due to the scarcity of publicly available parallel data. We approach gloss translation as a low-resource machine translation task and investigate two popular methods for improving translation quality: hyperparameter search and backtranslation. We discuss the potentials and pitfalls of these methods based on experiments on the RWTH-PHOENIX-Weather 2014T dataset.



References used
https://aclanthology.org/
rate research

Read More

Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss to-text translation, where a gloss is a sequence of transcribed spoken-language words in the order in which they are signed. We focus here on gloss-to-text translation, which we treat as a low-resource neural machine translation (NMT) problem. However, unlike traditional low resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lexical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical overlap and handle syntactic divergence by proposing two rule-based heuristics that generate pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on this synthetic data, we improve translation from American Sign Language (ASL) to English and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.
Communication between healthcare professionals and deaf patients is challenging, and the current COVID-19 pandemic makes this issue even more acute. Sign language interpreters can often not enter hospitals and face masks make lipreading impossible. T o address this urgent problem, we developed a system which allows healthcare professionals to translate sentences that are frequently used in the diagnosis and treatment of COVID-19 into Sign Language of the Netherlands (NGT). Translations are displayed by means of videos and avatar animations. The architecture of the system is such that it could be extended to other applications and other sign languages in a relatively straightforward way.
This paper presents an overview of AVASAG; an ongoing applied-research project developing a text-to-sign-language translation system for public services. We describe the scientific innovation points (geometry-based SL-description, 3D animation and video corpus, simplified annotation scheme, motion capture strategy) and the overall translation pipeline.
This paper describes the submission to the IWSLT 2021 Low-Resource Speech Translation Shared Task by IMS team. We utilize state-of-the-art models combined with several data augmentation, multi-task and transfer learning approaches for the automatic s peech recognition (ASR) and machine translation (MT) steps of our cascaded system. Moreover, we also explore the feasibility of a full end-to-end speech translation (ST) model in the case of very constrained amount of ground truth labeled data. Our best system achieves the best performance among all submitted systems for Congolese Swahili to English and French with BLEU scores 7.7 and 13.7 respectively, and the second best result for Coastal Swahili to English with BLEU score 14.9.
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo- European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا