Do you want to publish a course? Click here

Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre- trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.
Math word problem solving has attracted considerable research interest in recent years. Previous works have shown the effectiveness of utilizing graph neural networks to capture the relationships in the problem. However, these works did not carefully take the edge label information and the long-range word relationship across sentences into consideration. In addition, during generation, they focus on the most relevant areas of the currently generated word, while neglecting the rest of the problem. In this paper, we propose a novel Edge-Enhanced Hierarchical Graph-to-Tree model (EEH-G2T), in which the math word problems are represented as edge-labeled graphs. Specifically, an edge-enhanced hierarchical graph encoder is used to incorporate edge label information. This encoder updates the graph nodes hierarchically in two steps: sentence-level aggregation and problem-level aggregation. Furthermore, a tree-structured decoder with a split attention mechanism is applied to guide the model to pay attention to different parts of the input problem. Experimental results on the MAWPS and Math23K dataset showed that our EEH-G2T can effectively improve performance compared with state-of-the-art methods.
We introduce the new task of domain name dispute resolution (DNDR), that predicts the outcome of a process for resolving disputes about legal entitlement to a domain name. TheICANN UDRP establishes a mandatory arbitration process for a dispute betwee n a trade-mark owner and a domain name registrant pertaining to a generic Top-Level Domain (gTLD) name (one ending in .COM, .ORG, .NET, etc). The nature of the problem leads to a very skewed data set, which stems from being able to register a domain name with extreme ease, very little expense, and no need to prove an entitlement to it. In this paper, we describe thetask and associated data set. We also present benchmarking results based on a range of mod-els, which show that simple baselines are in general difficult to beat due to the skewed data distribution, but in the specific case of the respondent having submitted a response, a fine-tuned BERT model offers considerable improvements over a majority-class model
We address the compositionality challenge presented by the SCAN benchmark. Using data augmentation and a modification of the standard seq2seq architecture with attention, we achieve SOTA results on all the relevant tasks from the benchmark, showing t he models can generalize to words used in unseen contexts. We propose an extension of the benchmark by a harder task, which cannot be solved by the proposed method.
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containi ng one-unknown arithmetic word problems, such problems are often considered solved'' with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Event coreference resolution is an important research problem with many applications. Despite the recent remarkable success of pre-trained language models, we argue that it is still highly beneficial to utilize symbolic features for the task. However , as the input for coreference resolution typically comes from upstream components in the information extraction pipeline, the automatically extracted symbolic features can be noisy and contain errors. Also, depending on the specific context, some features can be more informative than others. Motivated by these observations, we propose a novel context-dependent gated module to adaptively control the information flows from the input symbolic features. Combined with a simple noisy training method, our best models achieve state-of-the-art results on two datasets: ACE 2005 and KBP 2016.
This paper studies the problem of cross-document event coreference resolution (CDECR) that seeks to determine if event mentions across multiple documents refer to the same real-world events. Prior work has demonstrated the benefits of the predicate-a rgument information and document context for resolving the coreference of event mentions. However, such information has not been captured effectively in prior work for CDECR. To address these limitations, we propose a novel deep learning model for CDECR that introduces hierarchical graph convolutional neural networks (GCN) to jointly resolve entity and event mentions. As such, sentence-level GCNs enable the encoding of important context words for event mentions and their arguments while the document-level GCN leverages the interaction structures of event mentions and arguments to compute document representations to perform CDECR. Extensive experiments are conducted to demonstrate the effectiveness of the proposed model.
External syntactic and semantic information has been largely ignored by existing neural coreference resolution models. In this paper, we present a heterogeneous graph-based model to incorporate syntactic and semantic structures of sentences. The prop osed graph contains a syntactic sub-graph where tokens are connected based on a dependency tree, and a semantic sub-graph that contains arguments and predicates as nodes and semantic role labels as edges. By applying a graph attention network, we can obtain syntactically and semantically augmented word representation, which can be integrated using an attentive integration layer and gating mechanism. Experiments on the OntoNotes 5.0 benchmark show the effectiveness of our proposed model.
Recent work on entity coreference resolution (CR) follows current trends in Deep Learning applied to embeddings and relatively simple task-related features. SOTA models do not make use of hierarchical representations of discourse structure. In this w ork, we leverage automatically constructed discourse parse trees within a neural approach and demonstrate a significant improvement on two benchmark entity coreference-resolution datasets. We explore how the impact varies depending upon the type of mention.
Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each loc al sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا