Do you want to publish a course? Click here

Hierarchical Graph Convolutional Networks for Jointly Resolving Cross-document Coreference of Entity and Event Mentions

شبكة هرمية تشمل الشبكات التنافيلية لحل المشترك Dockence Coreference من الكيان والحدث

116   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper studies the problem of cross-document event coreference resolution (CDECR) that seeks to determine if event mentions across multiple documents refer to the same real-world events. Prior work has demonstrated the benefits of the predicate-argument information and document context for resolving the coreference of event mentions. However, such information has not been captured effectively in prior work for CDECR. To address these limitations, we propose a novel deep learning model for CDECR that introduces hierarchical graph convolutional neural networks (GCN) to jointly resolve entity and event mentions. As such, sentence-level GCNs enable the encoding of important context words for event mentions and their arguments while the document-level GCN leverages the interaction structures of event mentions and arguments to compute document representations to perform CDECR. Extensive experiments are conducted to demonstrate the effectiveness of the proposed model.

References used
https://aclanthology.org/
rate research

Read More

Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utiliz e complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.
We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology princip les. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.
We study the problem of Event Causality Identification (ECI) to detect causal relation between event mention pairs in text. Although deep learning models have recently shown state-of-the-art performance for ECI, they are limited to the intra-sentence setting where event mention pairs are presented in the same sentences. This work addresses this issue by developing a novel deep learning model for document-level ECI (DECI) to accept inter-sentence event mention pairs. As such, we propose a graph-based model that constructs interaction graphs to capture relevant connections between important objects for DECI in input documents. Such interaction graphs are then consumed by graph convolutional networks to learn document context-augmented representations for causality prediction between events. Various information sources are introduced to enrich the interaction graphs for DECI, featuring discourse, syntax, and semantic information. Our extensive experiments show that the proposed model achieves state-of-the-art performance on two benchmark datasets.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or t hey encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.
Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا