Do you want to publish a course? Click here

Recently, pre-trained language models (LMs) have achieved strong performance when fine-tuned on difficult benchmarks like SuperGLUE. However, performance can suffer when there are very few labeled examples available for fine-tuning. Pattern Exploitin g Training (PET) is a recent approach that leverages patterns for few-shot learning. However, PET uses task-specific unlabeled data. In this paper, we focus on few-shot learning without any unlabeled data and introduce ADAPET, which modifies PET's objective to provide denser supervision during fine-tuning. As a result, ADAPET outperforms PET on SuperGLUE without any task-specific unlabeled data.
Large-scale, pre-trained language models (LMs) have achieved human-level performance on a breadth of language understanding tasks. However, evaluations only based on end task performance shed little light on machines' true ability in language underst anding and reasoning. In this paper, we highlight the importance of evaluating the underlying reasoning process in addition to end performance. Toward this goal, we introduce Tiered Reasoning for Intuitive Physics (TRIP), a novel commonsense reasoning dataset with dense annotations that enable multi-tiered evaluation of machines' reasoning process. Our empirical results show that while large LMs can achieve high end performance, they struggle to support their predictions with valid supporting evidence. The TRIP dataset and our baseline results will motivate verifiable evaluation of commonsense reasoning and facilitate future research toward developing better language understanding and reasoning models.
Stance detection determines whether the author of a text is in favor of, against or neutral to a specific target and provides valuable insights into important events such as legalization of abortion. Despite significant progress on this task, one of the remaining challenges is the scarcity of annotations. Besides, most previous works focused on a hard-label training in which meaningful similarities among categories are discarded during training. To address these challenges, first, we evaluate a multi-target and a multi-dataset training settings by training one model on each dataset and datasets of different domains, respectively. We show that models can learn more universal representations with respect to targets in these settings. Second, we investigate the knowledge distillation in stance detection and observe that transferring knowledge from a teacher model to a student model can be beneficial in our proposed training settings. Moreover, we propose an Adaptive Knowledge Distillation (AKD) method that applies instance-specific temperature scaling to the teacher and student predictions. Results show that the multi-dataset model performs best on all datasets and it can be further improved by the proposed AKD, outperforming the state-of-the-art by a large margin. We publicly release our code.
While multilingual pretrained language models (LMs) fine-tuned on a single language have shown substantial cross-lingual task transfer capabilities, there is still a wide performance gap in semantic parsing tasks when target language supervision is a vailable. In this paper, we propose a novel Translate-and-Fill (TaF) method to produce silver training data for a multilingual semantic parser. This method simplifies the popular Translate-Align-Project (TAP) pipeline and consists of a sequence-to-sequence filler model that constructs a full parse conditioned on an utterance and a view of the same parse. Our filler is trained on English data only but can accurately complete instances in other languages (i.e., translations of the English training utterances), in a zero-shot fashion. Experimental results on three multilingual semantic parsing datasets show that data augmentation with TaF reaches accuracies competitive with similar systems which rely on traditional alignment techniques.
In this paper, we focus on the detection of sexist hate speech against women in tweets studying for the first time the impact of gender stereotype detection on sexism classification. We propose: (1) the first dataset annotated for gender stereotype d etection, (2) a new method for data augmentation based on sentence similarity with multilingual external datasets, and (3) a set of deep learning experiments first to detect gender stereotypes and then, to use this auxiliary task for sexism detection. Although the presence of stereotypes does not necessarily entail hateful content, our results show that sexism classification can definitively benefit from gender stereotype detection.
This paper focuses on paraphrase generation,which is a widely studied natural language generation task in NLP. With the development of neural models, paraphrase generation research has exhibited a gradual shift to neural methods in the recent years. This has provided architectures for contextualized representation of an input text and generating fluent, diverseand human-like paraphrases. This paper surveys various approaches to paraphrase generation with a main focus on neural methods.
Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and ef ficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.
We present Hidden-State Optimization (HSO), a gradient-based method for improving the performance of transformer language models at inference time. Similar to dynamic evaluation (Krause et al., 2018), HSO computes the gradient of the log-probability the language model assigns to an evaluation text, but uses it to update the cached hidden states rather than the model parameters. We test HSO with pretrained Transformer-XL and GPT-2 language models, finding improvement on the WikiText-103 and PG-19 datasets in terms of perplexity, especially when evaluating a model outside of its training distribution. We also demonstrate downstream applicability by showing gains in the recently developed prompt-based few-shot evaluation setting, again with no extra parameters or training data.
To find a suitable embedding for a knowledge graph remains a big challenge nowadays. By using previous knowledge graph embedding methods, every entity in a knowledge graph is usually represented as a k-dimensional vector. As we know, an affine transf ormation can be expressed in the form of a matrix multiplication followed by a translation vector. In this paper, we firstly utilize a set of affine transformations related to each relation to operate on entity vectors, and then these transformed vectors are used for performing embedding with previous methods. The main advantage of using affine transformations is their good geometry properties with interpretability. Our experimental results demonstrate that the proposed intuitive design with affine transformations provides a statistically significant increase in performance with adding a few extra processing steps or adding a limited number of additional variables. Taking TransE as an example, we employ the scale transformation (the special case of an affine transformation), and only introduce k additional variables for each relation. Surprisingly, it even outperforms RotatE to some extent on various data sets. We also introduce affine transformations into RotatE, Distmult and ComplEx, respectively, and each one outperforms its original method.
Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyy sal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا