في هذه الورقة، نركز على اكتشاف خطاب الكراهية الجنسية ضد المرأة في تغريدات الدراسة لأول مرة تأثير الكشف عن التصنيف الجنساني حول التصنيف الجنساني.نقترح: (1) البيانات الأولى المشروحة للكشف عن النمط الجنساني، (2) طريقة جديدة لتعزيز البيانات بناء على تشابه الجملة مع مجموعات بيانات خارجية متعددة اللغات، و (3) مجموعة من تجارب التعلم العميق أولا للكشف عن القوالب النمطية الجنسانية ثم، لاستخدام هذه المهمة الإضافية للكشف عن الجنسين.على الرغم من أن وجود الصور النمطية لا ينطوي بالضرورة على المحتوى البغيض، إلا أن نتائجنا تظهر أن التصنيف الجنسي يمكن أن يستفيد بشكل نهائي من اكتشاف الصورة النمطية الجنسانية.
In this paper, we focus on the detection of sexist hate speech against women in tweets studying for the first time the impact of gender stereotype detection on sexism classification. We propose: (1) the first dataset annotated for gender stereotype detection, (2) a new method for data augmentation based on sentence similarity with multilingual external datasets, and (3) a set of deep learning experiments first to detect gender stereotypes and then, to use this auxiliary task for sexism detection. Although the presence of stereotypes does not necessarily entail hateful content, our results show that sexism classification can definitively benefit from gender stereotype detection.
References used
https://aclanthology.org/
Internet search affects people's cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imb
Vector representations have become a central element in semantic language modelling, leading to mathematical overlaps with many fields including quantum theory. Compositionality is a core goal for such representations: given representations for wet'
We observe an instance of gender-induced bias in a downstream application, despite the absence of explicit gender words in the test cases. We provide a test set, SoWinoBias, for the purpose of measuring such latent gender bias in coreference resoluti
The massive spread of false information on social media has become a global risk especially in a global pandemic situation like COVID-19. False information detection has thus become a surging research topic in recent months. In recent years, supervis
In this paper we address the problem of fine-tuned text generation with a limited computational budget. For that, we use a well-performing text generative adversarial network (GAN) architecture - Diversity-Promoting GAN (DPGAN), and attempted a drop-