Do you want to publish a course? Click here

This paper deals with the performance study of the self-excited induction generator when driven by wind turbine for producing electrical energy. This was done by modeling both the induction generator and the wind turbine using the Matlab program, and depending on the general theory of electrical machines. method for this system by studying together the mechanical characteristics of the wind turbine and operating characteristics of the induction generator.
This paper treats the issue of wind energy storage, mechanically, using the flywheel device. We control the speed of the wind turbine and the flywheel by means of traditional PID controllers. These controllers are designed depending on the system m odel and its parameters. Speed control is achieved by electromagnetic rotor flux orientation as called vector control. Speed reference value of the wind turbine will be generated in order to track the maximum power point. The flywheel reference speed is generated based on a second order filter of power which is considered as a new contribution in this field of research. Frequency converters are not modeled but we only consider the control strategy. The results of modeling and simulation in Matlab satisfy the power smoothing issue and reflect the importance of this study.
This research aims to study the effect of addition the filling materials (sodium aluminosilicate, Talc) to the unsaturated polyester(unsaturated polyester resign)(UPR) first, and unsaturated polyester reinforced by fiberglass (20%) secondly, Number o f mechanical tests were done, they included (Tensile, Flexural Strength). The effect of addition of filling materials sodium aluminosilicate (SAS), Talc, and a mixture of sodium aluminosilicate and Talc to the unreinforced polyester with fiberglass was studied in the first step of the research, and the results showed that the best values were gotten when adding a mixture of ((SAS) and Talc) at ratio (10% SAS,5% Talc), where the tensile strength value raised up from (31.2 MPa) to (33 MPa), and the elastic module value also raised up from (2330 MPa) to (2750.5 MPa) , and the flexural strength value also raised up from (0.057 GPa) to (0.0729 GPa). The effect of addition of filling materials (sodium aluminosilicate, Talc, and a mixture of sodium aluminosilicate and Talc ) to the reinforced polyester with fiberglass (20%) was studied in the second step of the research, and the results showed that the best values were gotten when adding a mixture of ((SAS) and Talc) at ratio (5% SAS,5% Talc), where the tensile strength value raised up from (101.7 MPa) to (108.8 MPa), and the elastic module value also raised up from (5616 MPa) to (6367.9 MPa), and the flexural strength value raised up from (0.1203 GPa) to (0.1597 GPa).
Efforts are being made to connect many wind farms to Syrian electrical network As of Wind turbine the increases; their Cumulative impact on dynamic operational characteristics of power system will increase. In this paper, the impact of constant spe ed wind turbines utilizing squirrel cage induction generators, the most worldwide spread nowadays, on the transient stability of Syrian power system is analyzed. Various aspects have been considered like wind turbine penetration level, fault location on power system overhead lines and network topology transforming. Results of this study show that wind turbine farms planned to be connected to Syrian electrical network will have significant impact in improving transient stability parameters (CCT,d). As the wind turbine penetration level increases, their impact will increase, but still remain dependent on the fault location and network topology transforming caused by double circuits of overhead lines.
This study aims to analyze the effect of the wind farms on frequency stability of the electrical power network, and the description of the performance of Syrian Electrical Power System with integration of wind farms in several regions in Syria (Al-Q uenetera – Al-Hejana - Ghabagheb) through the evaluation of frequency stability of the power system and the Critical Clearing Time (CCT). The effect of wind farms on the frequency behavior of Syrian network and factors related will be investigated such as generation technology by replacing the power-generated source by two main types of induction generators, changing the location of wind farms and increasing gradually the rate of wind power. The simulation analysis will be applied on Syrian Electrical Power System 230KV – 400KV, by using program NEPLAN, which gives access to an extensive library of grid components, and relevant wind turbine model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا