Do you want to publish a course? Click here

One of the challenges to the operation of a large and interconnected power systems is to insure that generators will remain in synchronism with one another following large disturbances such as short circuits on transmission lines and bus bars with as sociated operation of protection system. In this research, the impact of short circuits and their sustained duration on Syrian power system was analyzed through the dynamic simulation of three-phase faults at substations with varying fault clearance time at these substations. In addition, critical fault clearing times on 230kV, 400kV network and substation bus bars were determined, as well as the influence of distance protection and bus bar differential protection on Syrian power system.
Efforts are being made to connect many wind farms to Syrian electrical network As of Wind turbine the increases; their Cumulative impact on dynamic operational characteristics of power system will increase. In this paper, the impact of constant spe ed wind turbines utilizing squirrel cage induction generators, the most worldwide spread nowadays, on the transient stability of Syrian power system is analyzed. Various aspects have been considered like wind turbine penetration level, fault location on power system overhead lines and network topology transforming. Results of this study show that wind turbine farms planned to be connected to Syrian electrical network will have significant impact in improving transient stability parameters (CCT,d). As the wind turbine penetration level increases, their impact will increase, but still remain dependent on the fault location and network topology transforming caused by double circuits of overhead lines.
Worldwide wind turbines have steadily increased. They are very different in nature from conventional generators. Induction generators in large scale are used in wind turbines for their simple construction and reliable operation. With the increase in penetration of wind turbines, the power system dominated by synchronous machines will experience a change in dynamics and operational parameters. This paper aims to analyze the impact of induction generators on transient and small signal stability of power systems by gradually increasing the rate of power generated by wind turbines and changing the location of these turbines in the power system.
In this research the dynamic impact of the interconnection on the rotor angle Stability for Synchronous Generators in the Syrian Network were analyzed through the dynamic simulation of the power system and building of equations is linear and then use the program PSS / E (Power system simulation)to resolve and identify determinants of the system and determine critical fault clearing times of three-phase faults on the 400 KV addition to identifying the angular revolving generators and thus to verify the stability whether of its work independently within the Syrian electrical system or as part of the five countries interconnection project.
This paper deals with the performance study of the self-excited induction generator when driven by wind turbine for producing electrical energy. This was done by modeling both the induction generator and the wind turbine using the Matlab program, and depending on the general theory of electrical machines. method for this system by studying together the mechanical characteristics of the wind turbine and operating characteristics of the induction generator.
This paper aims to use Static Synchronous Compensators (STATCOMs) in two cases combined or distributed, where it act in the first case as one compensator at one placement of electrical network, for the same required power of studied network, and d istributed compensators as multi-STACOM with suitable powers in the second case where they are connected at the best placements of studied network, for improving critical clearing time of IEEE-9 nodes test system and its transient stability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا