Do you want to publish a course? Click here

Unsupervised relation extraction works by clustering entity pairs that have the same relations in the text. Some existing variational autoencoder (VAE)-based approaches train the relation extraction model as an encoder that generates relation classif ications. A decoder is trained along with the encoder to reconstruct the encoder input based on the encoder-generated relation classifications. These classifications are a latent variable so they are required to follow a pre-defined prior distribution which results in unstable training. We propose a VAE-based unsupervised relation extraction technique that overcomes this limitation by using the classifications as an intermediate variable instead of a latent variable. Specifically, classifications are conditioned on sentence input, while the latent variable is conditioned on both the classifications and the sentence input. This allows our model to connect the decoder with the encoder without putting restrictions on the classification distribution; which improves training stability. Our approach is evaluated on the NYT dataset and outperforms state-of-the-art methods.
There has been a significant progress in the field of Extractive Question Answering (EQA) in the recent years. However, most of them are reliant on annotations of answer-spans in the corresponding passages. In this work, we address the problem of EQA when no annotations are present for the answer span, i.e., when the dataset contains only questions and corresponding passages. Our method is based on auto-encoding of the question that performs a question answering task during encoding and a question generation task during decoding. We show that our method performs well in a zero-shot setting and can provide an additional loss to boost performance for EQA.
Neural relation extraction models have shown promising results in recent years; however, the model performance drops dramatically given only a few training samples. Recent works try leveraging the advance in few-shot learning to solve the low resourc e problem, where they train label-agnostic models to directly compare the semantic similarities among context sentences in the embedding space. However, the label-aware information, i.e., the relation label that contains the semantic knowledge of the relation itself, is often neglected for prediction. In this work, we propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction. We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance on low-resource relation extraction tasks.
Fine-grained temporal relation extraction (FineTempRel) aims to recognize the durations and timeline of event mentions in text. A missing part in the current deep learning models for FineTempRel is their failure to exploit the syntactic structures of the input sentences to enrich the representation vectors. In this work, we propose to fill this gap by introducing novel methods to integrate the syntactic structures into the deep learning models for FineTempRel. The proposed model focuses on two types of syntactic information from the dependency trees, i.e., the syntax-based importance scores for representation learning of the words and the syntactic connections to identify important context words for the event mentions. We also present two novel techniques to facilitate the knowledge transfer between the subtasks of FineTempRel, leading to a novel model with the state-of-the-art performance for this task.
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem , or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.
Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual enc oders suggests an easy optimism of train on English, run on any language'', we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.
Machine learning-based prediction of material properties is often hampered by the lack of sufficiently large training data sets. The majority of such measurement data is embedded in scientific literature and the ability to automatically extract these data is essential to support the development of reliable property prediction methods. In this work, we describe a methodology for developing an automatic property extraction framework using material solubility as the target property. We create a training and evaluation data set containing tags for solubility-related entities using a combination of regular expressions and manual tagging. We then compare five entity recognition models leveraging both token-level and span-level architectures on the task of classifying solute names, solubility values, and solubility units. Additionally, we explore a novel pretraining approach that leverages automated chemical name and quantity extraction tools to generate large datasets that do not rely on intensive manual tagging. Finally, we perform an analysis to identify the causes of classification errors.
Compliments and concerns in reviews are valuable for understanding users' shopping interests and their opinions with respect to specific aspects of certain items. Existing review-based recommenders favor large and complex language encoders that can o nly learn latent and uninterpretable text representations. They lack explicit user-attention and item-property modeling, which however could provide valuable information beyond the ability to recommend items. Therefore, we propose a tightly coupled two-stage approach, including an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Estimator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.
To find a suitable embedding for a knowledge graph remains a big challenge nowadays. By using previous knowledge graph embedding methods, every entity in a knowledge graph is usually represented as a k-dimensional vector. As we know, an affine transf ormation can be expressed in the form of a matrix multiplication followed by a translation vector. In this paper, we firstly utilize a set of affine transformations related to each relation to operate on entity vectors, and then these transformed vectors are used for performing embedding with previous methods. The main advantage of using affine transformations is their good geometry properties with interpretability. Our experimental results demonstrate that the proposed intuitive design with affine transformations provides a statistically significant increase in performance with adding a few extra processing steps or adding a limited number of additional variables. Taking TransE as an example, we employ the scale transformation (the special case of an affine transformation), and only introduce k additional variables for each relation. Surprisingly, it even outperforms RotatE to some extent on various data sets. We also introduce affine transformations into RotatE, Distmult and ComplEx, respectively, and each one outperforms its original method.
The knowledge of the European silk textile production is a typical case for which the information collected is heterogeneous, spread across many museums and sparse since rarely complete. Knowledge Graphs for this cultural heritage domain, when being developed with appropriate ontologies and vocabularies, enable to integrate and reconcile this diverse information. However, many of these original museum records still have some metadata gaps. In this paper, we present a zero-shot learning approach that leverages the ConceptNet common sense knowledge graph to predict categorical metadata informing about the silk objects production. We compared the performance of our approach with traditional supervised deep learning-based methods that do require training data. We demonstrate promising and competitive performance for similar datasets and circumstances and the ability to predict sometimes more fine-grained information. Our results can be reproduced using the code and datasets published at https://github.com/silknow/ZSL-KG-silk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا