Do you want to publish a course? Click here

Zero-Shot Information Extraction to Enhance a Knowledge Graph Describing Silk Textiles

استخراج المعلومات Zero-Shot لتعزيز الرسم البياني المعرفة يصف المنسوجات الحريرية

301   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The knowledge of the European silk textile production is a typical case for which the information collected is heterogeneous, spread across many museums and sparse since rarely complete. Knowledge Graphs for this cultural heritage domain, when being developed with appropriate ontologies and vocabularies, enable to integrate and reconcile this diverse information. However, many of these original museum records still have some metadata gaps. In this paper, we present a zero-shot learning approach that leverages the ConceptNet common sense knowledge graph to predict categorical metadata informing about the silk objects production. We compared the performance of our approach with traditional supervised deep learning-based methods that do require training data. We demonstrate promising and competitive performance for similar datasets and circumstances and the ability to predict sometimes more fine-grained information. Our results can be reproduced using the code and datasets published at https://github.com/silknow/ZSL-KG-silk.



References used
https://aclanthology.org/
rate research

Read More

We cast a suite of information extraction tasks into a text-to-triple translation framework. Instead of solving each task relying on task-specific datasets and models, we formalize the task as a translation between task-specific input text and output triples. By taking the task-specific input, we enable a task-agnostic translation by leveraging the latent knowledge that a pre-trained language model has about the task. We further demonstrate that a simple pre-training task of predicting which relational information corresponds to which input text is an effective way to produce task-specific outputs. This enables the zero-shot transfer of our framework to downstream tasks. We study the zero-shot performance of this framework on open information extraction (OIE2016, NYT, WEB, PENN), relation classification (FewRel and TACRED), and factual probe (Google-RE and T-REx). The model transfers non-trivially to most tasks and is often competitive with a fully supervised method without the need for any task-specific training. For instance, we significantly outperform the F1 score of the supervised open information extraction without needing to use its training set.
Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language infe rence. We propose easy and effective modifications to how information is presented to a model for this task. We show via systematic experiments that these strategies substantially improve tabular inference performance.
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work prop oses a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.
Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities. In this paper, we emphasize the importance of incorporating events in KG representation learning, and propose an event-enhanced KG embedding model EventKE. Specifically, given the original KG, we first incorporate event nodes by building a heterogeneous network, where entity nodes and event nodes are distributed on the two sides of the network inter-connected by event argument links. We then use entity-entity relations from the original KG and event-event temporal links to inner-connect entity and event nodes respectively. We design a novel and effective attention-based message passing method, which is conducted on entity-entity, event-entity, and event-event relations to fuse the event information into KG embeddings. Experimental results on real-world datasets demonstrate that events can greatly improve the quality of the KG embeddings on multiple downstream tasks.
Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access train ing data in a high-resource language, while need to answer multilingual questions without any labeled data in target languages. A straightforward approach is resorting to pre-trained multilingual models (e.g., mBERT) for cross-lingual transfer, but there is a still significant gap of KGQA performance between source and target languages. In this paper, we exploit unsupervised bilingual lexicon induction (BLI) to map training questions in source language into those in target language as augmented training data, which circumvents language inconsistency between training and inference. Furthermore, we propose an adversarial learning strategy to alleviate syntax-disorder of the augmented data, making the model incline to both language- and syntax-independence. Consequently, our model narrows the gap in zero-shot cross-lingual transfer. Experiments on two multilingual KGQA datasets with 11 zero-resource languages verify its effectiveness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا