أظهرت نماذج استخراج العلاقات العصبية نتائج واعدة في السنوات الأخيرة؛ومع ذلك، فإن أداء النموذج يسقط بشكل كبير منحت فقط بعض عينات التدريب فقط.تعمل الأعمال الحديثة التي تحاول الاستفادة من التقدم في سلطة قليلة التعلم لحل مشكلة الموارد المنخفضة، حيث تقوم بتدريب نماذج الملصقات الملائمة لمقارنة أوجه التشابه الدلالي بشكل مباشر بين جمل السياق في مساحة التضمين.ومع ذلك، فإن المعلومات التي تدرك الملصقات، أي علبة العلاقة التي تحتوي على المعرفة الدلالية المتعلقة بالعلاقة نفسها، مهملة في كثير من الأحيان للتنبؤ.في هذا العمل، نقترح إطارا للنظر في معلومات رسم الخرائط الدلالية الملمع والملصقات على حد سواء لاستخراج العلاقات المتعلقة بالموارد المنخفضة.نظهر أن دمج النوعين المذكورين أعلاه من تعيين معلومات التعيين في كلا المحالمان والضبط بشكل جيد يمكن أن يحسن بشكل كبير من أداء النموذج على مهام استخراج العلاقات المتعلقة بالموارد المنخفضة.
Neural relation extraction models have shown promising results in recent years; however, the model performance drops dramatically given only a few training samples. Recent works try leveraging the advance in few-shot learning to solve the low resource problem, where they train label-agnostic models to directly compare the semantic similarities among context sentences in the embedding space. However, the label-aware information, i.e., the relation label that contains the semantic knowledge of the relation itself, is often neglected for prediction. In this work, we propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction. We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance on low-resource relation extraction tasks.
References used
https://aclanthology.org/
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem
A bigger is better'' explosion in the number of parameters in deep neural networks has made it increasingly challenging to make state-of-the-art networks accessible in compute-restricted environments. Compression techniques have taken on renewed impo
In this paper we explore a very simple neural approach to mapping orthography to phonetic transcription in a low-resource context. The basic idea is to start from a baseline system and focus all efforts on data augmentation. We will see that some techniques work, but others do not.
Low-resource languages can be understood as languages that are more scarce, less studied, less privileged, less commonly taught and for which there are less resources available (Singh, 2008; Cieri et al., 2016; Magueresse et al., 2020). Natural Langu
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstrac