ﻻ يوجد ملخص باللغة العربية
We report normal-state transport properties of the single-crystalline samples of the silver-lead oxide superconductor Ag5Pb2O6, including the electrical resistivity, magnetoresistance, and Hall coefficient. From the Hall coefficient measurement, we confirmed that the carrier density of this oxide is as low as 5x10^{21} cm^{-3}, one order of magnitude smaller than those for ordinary alkali metals and noble metals. The magnetoresistance behavior is well characterized by the axial symmetry of the Fermi surface and by a single relaxation time. The T^2 term of the resistivity is scaled with the specific heat coefficient, based on the recent theory for the electron-electron scattering. The present results provide evidence that Ag5Pb2O6 is a low-carrier-density three-dimensional electron-gas-like system with enhanced electron-electron scatterings.
The crystal structure and numerous normal and superconducting state properties of layered tetragonal (P4/nmm) LaFeAsO, with F-doping of 11 %, are reported. Resistivity measurements give an onset transition temperature Tc = 28.2 K, and low field magne
We argue that the magnetic susceptibility data, Refs. 1-3, for the low-density two-dimensional (2D) silicon-based electron gas indicate that magnetically active electrons are localised in spin-droplets. The droplets exist in both the insulating and m
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc
We investigated the out-of-plane transport properties of parent and chemically substituted BaFe$_{2}$As$_{2}$ for various types of substitution. Based on the studies of Hall coefficient and chemical-substitution effect, we have clarified the origin f
The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here