ترغب بنشر مسار تعليمي؟ اضغط هنا

Three dimensional collective charge excitations in electron-doped cuprate superconductors

118   0   0.0 ( 0 )
 نشر من قبل Wei-Sheng Lee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.

قيم البحث

اقرأ أيضاً

High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phono n energies for example, lies at the heart of an electronically-driven superconducting phase at high temperatures. However, despite extensive studies, little information is available for comparison of high-energy magnetic excitations of hole- and electron-doped superconductors to assess a possible correlation with the respective superconducting transition temperatures. Here, we use resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge to reveal high-energy collective excitations in the archetype electron-doped cuprate Nd2-xCexCuO4 (NCCO). Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we find an unexpected and highly dispersive mode in superconducting NCCO that is undetected in the hole-doped compounds, which emanates from the zone center with a characteristic energy comparable to the pseudogap, and may signal a quantum phase distinct from superconductivity. The uncovered asymmetry in the high-energy collective excitations with respect to hole and electron doping provides additional constraints for modeling the HTSC cuprates.
157 - K. Ishii , M. Fujita , T. Sasaki 2014
The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we comb ine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam bda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.
305 - Xu Zhang , Heshan Yu , Ge He 2016
Superconductivity research is like running a marathon. Three decades after the discovery of high-Tc cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary o f the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.
88 - Bingying Pan , Yao Shen , Die Hu 2016
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally pr oposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا